Npv выше при ставке дисконтирования. Приведенная стоимость денежного потока: что это, как рассчитывается

Чистая приведённая стоимость

Чистая приведённая стоимость (чистая текущая стоимость, чистый дисконтированный доход, англ. Net present value , принятое в международной практике анализа инвестиционных проектов сокращение - NPV или ЧДД) - это сумма дисконтированных значений потока платежей , приведённых к сегодняшнему дню. Показатель NPV представляет собой разницу между всеми денежными притоками и оттоками, приведенными к текущему моменту времени (моменту оценки инвестиционного проекта). Он показывает величину денежных средств, которую инвестор ожидает получить от проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением проекта. Поскольку денежные платежи оцениваются с учётом их временной стоимости и рисков, NPV можно интерпретировать как стоимость, добавляемую проектом. Ее также можно интерпретировать как общую прибыль инвестора. В пользу такой интерпретации говорит то, что отношение NPV к совокупной величине дисконтированных инвестиционных затрат называется Индекс прибыльности (англ. Profitability Index или сокращенно PI).

В обобщенном варианте, инвестиции также должны дисконтироваться, так как в реальных проектах они осуществляются не одномоментно (в нулевом периоде), а растягиваются на несколько периодов. Расчёт ЧДД - стандартный метод оценки эффективности инвестиционного проекта и показывает оценку эффекта от инвестиции, приведённую к настоящему моменту времени с учётом разной временно́й стоимости денег. Если ЧДД больше 0, то инвестиция экономически эффективна, а если ЧДД меньше 0, то инвестиция экономически невыгодна (то есть альтернативный проект, доходность которого принята в качестве ставки дисконтирования требует меньших инвестиций для получения аналогичного потока доходов).

С помощью ЧДД можно также оценивать сравнительную эффективность альтернативных вложений (при одинаковых начальных вложениях более выгоден проект с наибольшим ЧДД). Но все же для сравнительного анализа более применимыми являются относительные показатели. Применительно к анализу инвестиционных проектов таким показателем является внутренняя норма доходности .

В отличие от показателя дисконтированной стоимости при расчете чистого дисконтированного дохода учитывается начальная инвестиция. Поэтому формула чистого дисконтированного дохода отличается от формулы дисконтированной стоимости на величину начальной инвестиции .

Достоинства и недостатки

Положительные качества ЧДД:

  1. Чёткие критерии принятия решений.
  2. Показатель учитывает стоимость денег во времени (используется коэффициент дисконтирования в формулах).
  3. Показатель учитывает риски проекта посредством различных ставок дисконтирования. Бо льшая ставка дисконтирования соответствует большим рискам, меньшая - меньшим.

Отрицательные качества ЧДД:

  1. Во многих случаях корректный расчёт ставки дисконтирования является проблематичным, что особенно характерно для многопрофильных проектов, которые оцениваются с использованием NPV.
  2. Хотя все денежные потоки (коэффициент дисконтирования может включать в себя инфляцию, однако зачастую это всего лишь норма прибыли, которая закладывается в расчетный проект) являются прогнозными значениями, формула не учитывает вероятность исхода события.

Для того чтобы оценить проект с учётом вероятности исхода событий поступают следующим образом:

Выделяют ключевые исходные параметры. Каждому параметру устанавливают ряд значений с указанием вероятности наступления события. Для каждой совокупности параметров рассчитывается вероятность наступления и NPV. Дальше идет расчет математического ожидания. В итоге получаем наиболее вероятностное NPV.

Пример

Корпорация должна решить, следует ли вводить новые линейки продуктов. Новый продукт будет иметь расходы на запуск, эксплуатационные расходы, а также входящие денежные потоки в течение шести лет. Этот проект будет иметь немедленный (T = 0) отток денежных средств в размере $ 100000 (которые могут включать в себя механизмы, а также расходы на обучение персонала). Другие оттоки денежных средств за 1-6 лет ожидаются в размере $ 5000 в год. Приток денежных средств, как ожидается, составит $ 30000 за каждый год 1-6. Все денежные потоки после уплаты налогов, и на 6 год никаких денежных потоков не планируется. Ставка дисконтирования составляет 10 %. Приведенная стоимость (PV) может быть рассчитана по каждому году:

Year Cash flow Present value
T=0 -$100,000
T=1 $22,727
T=2 $20,661
T=3 $18,783
T=4 $17,075
T=5 $15,523
T=6 $14,112

Сумма всех этих значений является настоящей чистой приведенной стоимостью, которая равна $ 8,881.52. Поскольку NPV больше нуля, то было бы лучше инвестировать в проект, чем класть деньги в банк, и корпорации должны вкладывать средства в этот проект, если нет альтернативы с более высоким NPV.

Тот же пример с формулами в Excel:

  • NPV (ставка, net_inflow) + initial_investment
  • PV (ставка, year_number, yearly_net_inflow)

При более реалистичных проблемах необходимо будет рассмотреть другие факторы, как расчет налогов, неравномерный денежный поток и ценности , а также наличие альтернативных возможностей для инвестиций.

Кроме того, если мы будем использовать формулы, упомянутые выше, для расчёта NPV - то мы видим, что входящие потоки (притоки) денежных средств являются непрерывными и имеют такую же сумму; в формуле

может быть использовано

Как уже упоминалось выше, что результат этой формулы, если, умноженная на годовой Чистые денежные средства, в-потоки и сократить на первоначальные затраты средств будет Чистая приведенная стоимость (NPV), так Поскольку NPV больше нуля, то было бы лучше инвестировать в проект, чем ничего не делать, и корпорации должны вкладывать средства в этот проект, если нет альтернативы с более высоким NPV.

См. также

Ссылки

  • Виленский П. Л., Лившиц В. Н., Смоляк С. А. Оценка эффективности инвестиционных проектов. Теория и практика. - М.: Дело, . - 1104 с. - ISBN 978-5-7749-0518-8 .
  • Четыркин Е. М. Финансовая математика. - М.: Дело, 2008. - 400 с. - ISBN 978-5-7749-0504-1 .
  • NPV - чистая текущая стоимость пример расчета, определение, характеристика, формула, условия сравнения, критерий приемлемости, недостатки.
  • NPV или IRR? Какой показатель когда использовать?

Wikimedia Foundation . 2010 .

Смотреть что такое "Чистая приведённая стоимость" в других словарях:

    Чистый дисконтированный доход (чистая приведённая стоимость) (англ. Net present value, общепринятое сокращение NPV (ЧДД)) это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню. Иначе говоря, для потока платежей CF,… … Википедия

    чистая приведенная стоимость - Приведённая стоимость будущих дополнительных поступлений, ожидаемых от данных активов за вычетом текущей стоимости дополнительных выплат денежных средств чистая приведенная стоимость… … Справочник технического переводчика

    Чистая текущая стоимость (чистая приведённая стоимость) (англ. Net present value, принятое в международной практике анализа инвестиционных проектов сокращение NPV (ЧДД)) это сумма дисконтированных значений потока платежей, приведённых к… … Википедия

    Чистый дисконтированный доход (чистая приведённая стоимость) (англ. Net present value, общепринятое сокращение NPV (ЧДД)) это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню. Иначе говоря, для потока платежей CF,… … Википедия

    О городе в Казахстане, ранее носившем такое название, см. Риддер Город Лениногорск Флаг Герб … Википедия

    Ипотечный кризис в США (англ. subprime mortgage crisis) финансово экономический кризис, характерными проявлениями которого стали увеличение количества невыплат по ипотечным кредитам с высоким уровнем риска, учащение случаев отчуждения… … Википедия

    Инфляция - (Inflation) Инфляция это обесценивание денежной единицы, уменьшение ее покупательной способности Общая информация об инфляции, виды инфляции, в чем состоит экономическая сущность, причины и последствия инфляции, показатели и индекс инфляции, как… … Энциклопедия инвестора

    Международный валютный фонд - (International Monetary Fund) МВФ это финансовое учреждение ООН, деятельность которого направленна на содействие и регулирование валютного обмена между странами, а так же выдачу займов государствам членам История развития МВФ, его организационная … Энциклопедия инвестора

    Отрасль - (Branch) Определение отрасли экономики, экономические циклы отрасли Информация об определении отрасли экономики, экономические циклы отрасли Содержание Содержание экономики Отрасли экономики Экономические циклы, их виды и влияние на различные… … Энциклопедия инвестора

Тема сегодняшней публикации для читателей нашего блога не нова. О том, что такое NPV и как рассчитать этот показатель, мы с той или иной степенью детализации уже вели речь в публикациях, посвященных теоретическим аспектам чистой приведенной стоимости.

Для более глубокого усвоения представленного ниже материала рекомендуем освежить в памяти некоторые концепции, бегло пробежавшись по следующим статьям:

Представленного в этих статьях материала хватит вполне, чтобы почувствовать себя спецом в весьма тонких вопросах математики, без которых не обходится ни один профессиональный (в их числе, разумеется, и Уоррен ).

Повторяться мы не станем. Наша задача – разобрать несколько практических примеров, которые помогут буквально почувствовать нутром смысл формулы NPV , включая каждый из входящих в нее параметров.

Что такое NPV

Традиционная расшифровка аббревиатуры NPV такова — Net Present Value.

Дословный перевод допускает троякое прочтение:

чистый дисконтированный (сокращенно – ЧДД; это сокращение нередко включается в математические формулы русскоязычных учебников),

чистая текущая стоимость (сокращение ЧТС практически хождения в научной литературе не имеет) и – самое распространенное —

чистая приведенная стоимость (ЧПС) .

Все три прочтения суть идентичны. С математической точки зрения, NPV – это величина, равная сумме приведенных к сегодняшнему дню потоков.

Инвестиционный смысл этого определения в том, чтобы показать размер финансовой отдачи от вложений в с сопутствующих .

С этих позиций NPV может служить мерилом инвестора.

Если эта величина положительна , значит инвестиция окупится, и инвестор получит прибыль.

Если NPV окажется отрицательной величиной , это свидетельство проекта.

Теоретически NPV может оказаться равным нулю , что будет означать лишь то, что начальные вложения в проект окупятся, но не более того. Лучше поискать проект с большей финансовой отдачей.

Традиционно расчет NPV служил (и служит до сих пор) действенным критерием принятия о вложении либо отказе от вложения в тот или иной проект.

С 2012 г. с подачи Организации Объединенных Наций по развитию (ЮНИДО) общепризнанным к выбору наилучшего инвестиционного решения считается расчет скорости удельного стоимости, включающего в себя и расчет NPV.

Последний метод предложен в 2009 г. группой экономистов во главе с российским ученым А.Б. Коганом и весьма эффективен при сравнении альтернатив с разными параметрами (то есть в ситуациях, где традиционные методы NPV и либо противоречат друг другу, либо приводят к неоднозначным выводам).

Указанному методу мы в ближайшем посвятим отдельную публикацию.

Сейчас же сосредоточимся на том, как рассчитать NPV проекта, используя для этих целей известную формулу.

NPV: формула расчета (пример)

Задача . Имеется три проекта для инвестиций. Первоначальные инвестиции С 0 в каждый из них составляют 400 условных единиц. Известна прибыль (П n ) , которую смогут генерировать проекты в ближайшие пять лет:

Проект Начальные
инвестиции
Прибыль по годам
П1 П2 П3 П4 П5
Проект 1 400 80 105 120 135 150
Проект 2 400 100 117 124 131 118
Проект 3 400 100 125 90 130 145

Норма прибыли i составляет 13 %. выбрать наиболее проект, используя формулу NPV.

Решение . Интересующая нас формула имеет следующий вид:

В этой формуле CF t обозначает чистый денежный поток на t -ом годичном интервале, i — (в десятичном выражении), N – количество лет.

В представленной формуле главное разглядеть фактор (коэффициент) дисконтирования 1/(1 + i) t .

В нашем случае для t = 0 он будет равен 1, для t = 1: 1/(1+0,13) 1 = 0,885 и т.д.

Рассчитаем значения NPV для каждого из трех проектов, используя табличное представление (оно более наглядно).

Проект 1
Год Денежный
поток
Коэффициент
дисконтирования
Дисконтированный
денежный поток
0 -400 1,000 -400
1 80 0,885 70,80
2 105 0,783 82,22
3 120 0,693 83,16
4 135 0,613 82,76
5 150 0,543 81,45
NPV = 0,39
Проект 2
Год Денежный
поток
Коэффициент
дисконтирования
Дисконтированный
денежный поток
0 -400 1,000 -400
1 100 0,885 88,50
2 117 0,783 91,61
3 124 0,693 85,93
4 131 0,613 80,30
5 118 0,543 64,07
NPV = 10,41
Проект 3
Год Денежный
поток
Коэффициент
дисконтирования
Дисконтированный
денежный поток
0 -400 1,000 -400
1 100 0,885 88,50
2 125 0,783 97,88
3 90 0,693 62,37
4 130 0,613 79,69
5 145 0,543 78,74
NPV = 7,18

Наибольший NPV имеет проект 2. С точки зрения NPV, этот проект и является самым выгодным.

Разумеется, вместо таблиц мы бы могли использовать иное представление решения:

NPV 1 = -400 * 1,000 + 80 * 0,885 + 105 * 0,783 + 120 * 0,693 + 135 * 0,613 + 150 * 0,543 = 0,39

NPV 2 = -400 * 1,000 + 100 * 0,885 + 117 * 0,783 + 124 * 0,693 + 131 * 0,613 + 118 * 0,543 = 10,41

NPV 3 = -400 * 1,000 + 100 * 0,885 + 125 * 0,783 + 90 * 0,693 + 130 * 0,613 + 145 * 0,543 = 7,18

Результат расчета NPV будет тот же.

На этом простом примере мы показали, как считать NPV, когда заранее известен объем первоначальных инвестиций и ожидаемые размеры прибыли на ближайшую перспективу.

На практике эти значения известны далеко не всегда, что существенно усложняет задачу выбора наиболее выгодного инвестиционного проекта.

Применение одного лишь метода NPV в таких ситуация может привести к неверным выводам: либо прибыль окажется невысока, либо ждать ее придется неоправданно долго.

Компенсировать недостатки NPV призваны другие расчетные показатели (уже упомянутый нами IRR, отражающий , и некоторые другие).

Думается, после проработки сегодняшней статьи вы уже не будете задаваться вопросом при виде загадочной трехбуквицы NPV, что это такое и как рассчитать сей показатель.

Удачных инвестиций!

Каждый человек, который серьезно занимался финансовой деятельностью или профессиональным инвестированием, сталкивался с таким показателем, как чистый дисконтированный доход или NPV . Этот показатель отражает инвестиционную эффективность изучаемого проекта. В программе Excel имеются инструменты, которые помогают рассчитать это значение. Давайте выясним, как их можно использовать на практике.

Показатель чистого дисконтированного дохода (ЧДД) по-английски называется Net present value, поэтому общепринято сокращенно его называть NPV . Существует ещё альтернативное его наименование – Чистая приведенная стоимость.

NPV определяет сумму приведенных к нынешнему дню дисконтированных значений платежей, которые являются разностью между притоками и оттоками. Если говорить простым языком, то данный показатель определяет, какую сумму прибыли планирует получить инвестор за вычетом всех оттоков после того, как окупится первоначальный вклад.

В программе Excel имеется функция, которая специально предназначена для вычисления NPV . Она относится к финансовой категории операторов и называется ЧПС . Синтаксис у этой функции следующий:

ЧПС(ставка;значение1;значение2;…)

Аргумент «Ставка» представляет собой установленную величину ставки дисконтирования на один период.

Аргумент «Значение» указывает величину выплат или поступлений. В первом случае он имеет отрицательный знак, а во втором – положительный. Данного вида аргументов в функции может быть от 1 до 254 . Они могут выступать, как в виде чисел, так и представлять собой ссылки на ячейки, в которых эти числа содержатся, впрочем, как и аргумент «Ставка» .

Проблема состоит в том, что функция хотя и называется ЧПС , но расчет NPV она проводит не совсем корректно. Связано это с тем, что она не учитывает первоначальную инвестицию, которая по правилам относится не к текущему, а к нулевому периоду. Поэтому в Экселе формулу вычисления NPV правильнее было бы записать так:

Первоначальная_инвестиция+ ЧПС(ставка;значение1;значение2;…)

Естественно, первоначальная инвестиция, как и любой вид вложения, будет со знаком «-» .

Пример вычисления NPV

Давайте рассмотрим применение данной функции для определения величины NPV на конкретном примере.

  1. Выделяем ячейку, в которой будет выведен результат расчета NPV . Кликаем по значку «Вставить функцию» , размещенному около строки формул.
  2. Запускается окошко Мастера функций . Переходим в категорию «Финансовые» или «Полный алфавитный перечень» . Выбираем в нем запись «ЧПС» и жмем на кнопку «OK» .
  3. После этого будет открыто окно аргументов данного оператора. Оно имеет число полей равное количеству аргументов функции. Обязательными для заполнения является поле «Ставка» и хотя бы одно из полей «Значение» .

    В поле «Ставка» нужно указать текущую ставку дисконтирования. Её величину можно вбить вручную, но в нашем случае её значение размещается в ячейке на листе, поэтому указываем адрес этой ячейки.

    В поле «Значение1» нужно указать координаты диапазона, содержащего фактические и предполагаемые в будущем денежные потоки, исключая первоначальный платеж. Это тоже можно сделать вручную, но гораздо проще установить курсор в соответствующее поле и с зажатой левой кнопкой мыши выделить соответствующий диапазон на листе.

    Так как в нашем случае денежные потоки размещены на листе цельным массивом, то вносить данные в остальные поля не нужно. Просто жмем на кнопку «OK» .

  4. Расчет функции отобразился в ячейке, которую мы выделили в первом пункте инструкции. Но, как мы помним, у нас неучтенной осталась первоначальная инвестиция. Для того, чтобы завершить расчет NPV , выделяем ячейку, содержащую функцию ЧПС . В строке формул появляется её значение.
  5. После символа «=» дописываем сумму первоначального платежа со знаком «-» , а после неё ставим знак «+» , который должен находиться перед оператором ЧПС .

    Можно также вместо числа указать адрес ячейки на листе, в которой содержится первоначальный взнос.

  6. Для того чтобы совершить расчет и вывести результат в ячейку, жмем на кнопку Enter .

Результат выведен и в нашем случае чистый дисконтированный доход равен 41160,77 рублей. Именно эту сумму инвестор после вычета всех вложений, а также с учетом дисконтной ставки, может рассчитывать получить в виде прибыли. Теперь, зная данный показатель, он может решать, стоит ему вкладывать деньги в проект или нет.

Как видим, при наличии всех входящих данных, выполнить расчет NPV при помощи инструментов Эксель довольно просто. Единственное неудобство составляет то, что функция, предназначенная для решения данной задачи, не учитывает первоначальный платеж. Но и эту проблему решить несложно, просто подставив соответствующее значение в итоговый расчет.

Для определения эффективности проекта могут применяться различные показатели, проводиться их расчеты. Одним из них является текущая чистая цена дела. Она представляет собой значение потока денег за время существования проекта, в котором учитывается временной фактор. Данный показатель относится к сложным методам оценки эффективности проектов.

Для расчета чистой стоимости существует специальная формула:

(Pt – денежные средства, их объем, который генерируется проектом в определенном временном периоде, d – норма дисконта; Io – инвестиционные затраты, которые пришлось понести на старте проекта; n – срок существования дела в годах).

Чистая текущая стоимость инвестиционного проекта: расчет в течение ряда лет.

Расходы на инвестиции могут осуществляться в течение ряда лет. Чтобы вычислить значение показателя NPV, нужна немного другая формула:

(It – затраты инвестиций в определенный временной период).

Если чистая текущая стоимость инвестиционного проекта при расчете принимает значение, которое выше 0, то это означает, что проект целесообразно претворять в жизнь. Если же значение показателя становится ниже 0, то проект лучше всего отвергнуть, так как он не принесет прибыли. Значение текущей чистой стоимости может оказаться равным 0. Это свидетельствует о том, что дело не будет давать доход, но и убытки тоже будут отсутствовать.

Рассматривая несколько различных проектов и выбирая среди них наиболее подходящий вариант, после расчета данного важного показателя следует выбрать тот вариант, у которого значение NPV выше, чем у остальных.

Величина чистой прибыли зависит от масштабов деятельности, которые выражаются в объемах производства, продаж или инвестиций. Большое значение показателя может не соответствовать эффективному использованию инвестиционных ресурсов. В таких ситуациях целесообразно определять значение рентабельности инвестиций. Для этого есть следующая формула:

(PVP обозначает дисконтированный поток средств, а PVI – дисконтированную стоимость инвестиционных затрат). Она представлена в обобщенном виде, но есть и ее расширенный вариант:

Исходя из всего вышесказанного, следует отметить, что проект может быть принят только в том случае, если он обеспечит поступление соответствующей нормы прибыли.

И с помощью каких формул этот показатель рассчитывается, но нуждается в простых подручных инструментах, позволяющих рассчитывать NPV быстрее, нежели вручную или с помощью обычных калькуляторов.

Им в помощь многофункциональная среда , позволяющая рассчитать NPV с помощью табличной данных либо же с применением специальных функций.

Разберем гипотетический пример, который решим посредством применения уже известной нам формулы расчета NPV, а затем повторим наши вычисления, используя возможности Excel.

Задача на нахождение NPV

Пример . Первоначальные в A составляют 10000 рублей. Ежегодная – 10 %. Динамика поступлений с 1-го по 10-ый годы представлена в нижеследующей таблице:

Период Притоки Оттоки
0 10000
1 1100
2 1200
3 1300
4 1450
5 1600
6 1720
7 1860
8 2200
9 2500
10 3600

Для наглядности cответствующие данные можно представить графически:

Рисунок 1. Графическое представление исходных данных для расчета NPV

Стандартное решение. Для решения задачи будем использовать уже известную нам формулу NPV:

Просто подставляем в нее известные значения, которые затем суммируем. Для этих вычислений нам пригодится калькулятор:

NPV = -10000/1,1 0 + 1100/1,1 1 + 1200/1,1 2 + 1300/1,1 3 + 1450/1,1 4 + 1600/1,1 5 + 1720/1,1 6 + 1860/1,1 7 + 2200/1,1 8 + 2500/1,1 9 + 3600/1,1 10 = 352,1738 рублей .

Расчет NPV в Excel (пример табличный)

Этот же пример мы можем решить, организовав соответствующие данные в форме таблицы Excel.

Выглядеть это должно примерно так:

Рисунок 2. Расположение данных примера на листе Excel

Для того чтобы получить нужный результат, мы должны соответствующие ячейки заполнить нужными формулами.

Ячейка Формула
E4 =1/СТЕПЕНЬ(1+$F$2/100;B4)
E5 =1/СТЕПЕНЬ(1+$F$2/100;B5)
E6 =1/СТЕПЕНЬ(1+$F$2/100;B6)
E7 =1/СТЕПЕНЬ(1+$F$2/100;B7)
E8 =1/СТЕПЕНЬ(1+$F$2/100;B8)
E9 =1/СТЕПЕНЬ(1+$F$2/100;B9)
E10 =1/СТЕПЕНЬ(1+$F$2/100;B10)
E11 =1/СТЕПЕНЬ(1+$F$2/100;B11)
E12 =1/СТЕПЕНЬ(1+$F$2/100;B12)
E13 =1/СТЕПЕНЬ(1+$F$2/100;B13)
E14 =1/СТЕПЕНЬ(1+$F$2/100;B14)
F4 =(C4-D4)*E4
F5 =(C5-D5)*E5
F6 =(C6-D6)*E6
F7 =(C7-D7)*E7
F8 =(C8-D8)*E8
F9 =(C9-D9)*E9
F10 =(C10-D10)*E10
F11 =(C11-D11)*E11
F12 =(C12-D12)*E12
F13 =(C13-D13)*E13
F14 =(C14-D14)*E14
F15 =СУММ(F4:F14)

В результате в ячейке F15 мы получим искомое значение NPV, равное 352,1738.

Чтобы создать такую таблицу нужно 3-4 минуты. Excel позволяет найти нужное значение NPV быстрее.

Расчет NPV в Excel (функция ЧПС)

Поместим в ячейку B17 (или любую другую ячейку) формулу:

ЧПС(F2/100;C5:C14)-D14

Мы мгновенно получим точное значение NPV в рублях (352,1738р.).

Рисунок 3. Вычисление NPV с помощью формулы Excel ЧПС

Наша формула ссылается на ячейки F2 (у нас там указана процентная ставка – 10 %; для использования в функции ЧПС нужно разделить ее на 100), диапазон значений C5:C14, где размещены данные о притоках , и на ячейку D14, содержащую размер первоначальных