Какая конструкция лучше ригельная или безригельный каркас. Безригельные каркасы в гражданском строительстве. Проблемы использования конструкций сборно-монолитного перекрытия

Каркас представляет собой систему, состоящую из стержневых несущих элементов — вертикальных (колонн) и горизонтальных балок (ригелей), объединенных жесткими горизонтальными дисками перекрытий и системой вертикальных связей.

Основное компоновочное преимущество каркасных систем в свободе планировочных решений, в связи с редко расставленными колоннами, имеющие укрупненные шаги в продольном и поперечном направлениях. Системе присуще четкое разделение на несущие и ограждающие конструкции. Несущий остов (колонны, ригели и диски перекрытий) воспринимает все нагрузки, а наружные стены выполняют роль ограждающих конструкций, воспринимая только собственный вес (самонесущие стены). Это дает возможность применять прочные и жесткие материалы - для несущих элементов каркаса, и тепло — звукоизоляционные материалы - для ограждающих. Использование высокоэффективных материалов позволяет добиться снижение веса здания, что положительно сказывается на статических свойствах здания.

Каркасными сооружают, как правило, общественные и административные здания. В последние годы строят также и каркасные многоэтажные жилые дома. В зданиях с полным каркасом несущий остов состоит из колонн и ригелей, выполняемых в виде балок для опирания конструкций перекрытий. Скрепленные между собой колонны и ригеля образуют несущие рамы, воспринимающие вертикальные и горизонтальные нагрузки здания.

Роль ограждающих элементов выполняют наружные стены Наружные стены в зданиях этого типа выполняются навесными или самонесущими .

Навесные ненесущие стены в виде навесных панелей прикрепляют к наружным колоннам каркаса. Самонесущие наружные стены опираются непосредственно на фундаменты или на фундаментные балки, устанавливаемые по столбчатым фундаментам. Самонесущие стены прикрепляются к колоннам каркаса. В зданиях с неполным каркасом наружные стены делают несущими, а колонны располагают лишь по внутренним осям здания. При этом ригели укладывают между колоннами, а иногда и между колоннами и наружными стенами. Такой конструктивный тип здания в современном строительстве имеет ограниченное применение.

Здание любого типа должно быть не только достаточно прочным: не разрушаться от действия нагрузок, но и обладать способностью сопротивляться опрокидыванию при действии горизонтальных нагрузок, и иметь пространственную жесткость, т. е. способность как в целом, так и в отдельных его частях сохранять первоначальную форму при действии проложенных сил.

Пространственная жесткость бескаркасных зданий обеспечивается несущими наружными и внутренними поперечными стенами, в том числе стенами лестничных клеток, связанными с наружными продольными стенами, а также междуэтажными перекрытиями, связывающими стены и разделяющими их по высоте здания на отдельные ярусы.

Конструктивная схемы зданий: а — с полным каркасом; б — с неполным каркасом; 1 — колонны; 2 — ригели; З — панели перекрытий; 4 — несущие наружные стены


Здание с несущими наружными стенами и внутренним каркасом: 1 – несущие стены; 2 – стены лестничной клетки; 3 – колонны; 4 стык колонн; 5 – ригели (прогоны); 6 – плита перекрытия

Здание с полным каркасом: 1 – колонны; 2 – навесные стены; 3 – ригели; 4 – стены лестничной клетки

Каркасная система наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения.

Каркасное здание сложнее обогреть, так как помещения получаются бо льшего объема, сложнее проектировать сеть обогревательных приборов, учитывая при этом санитарно-гигиенические требования. В принципе, у каждого отдельного помещения должен быть индивидуальный проект отопления и вентиляции, что создает определенные сложности для здания в целом, значительно удорожая стоимость проектных работ, строительства и эксплуатации. При этом перегородки обладают высокой тепловой инерционностью, намного быстрее нагреваясь и отдавая тепло.

Учитывая все сказанное, каркасные системы до последнего времени было запрещено использовать в массовой жилой застройке. Каркасные сооружения применялись, в основном в зрелищной, выставочной части общественных зданий. При этом, как правило, конструктивная схема сооружения была комплексной, то есть каркасная система сочеталась с бескаркасной в административной части – из условий экономической эффективности возведения и эксплуатации сооружения, его пожарной безопасности и экологических качеств.

Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения свободы планировки, возможности создания большепролетных зальных помещений — компоновочные преимущества каркасных систем перед бескаркасными очевидны.

При этом следует помнить и о недостатках каркасной системы. В среднем, каркасные здания – в 3-7 раз дороже бескаркасных, как показывает многолетний анализ технико-экономических показателей за 70-80-е годы ХХ столетия, с учетом индустриального изготовления большинства несущих элементов.

В каркасной системе намного сложнее и дороже выполнить вертикальные преграды огню (брандмауэры ), поэтому при пожарах, как правило, выгорает целый ярус каркасного здания, ограниченный перекрытиями. Это создает дополнительные сложности при проектировании путей эвакуации.

Каркасная конструктивная система: 1 – колонны каркаса; 2 – ригели каркаса; 3 – сборный настил перекрытия; 4– наружная навесная стеновая панель

Схема каркаса многоэтажного здания: 1- колонны; 2 - ригель; 3- плиты перекрытий; 4 -панели наружных стен

Общий вид зданий с каркасной конструктивной системой: а – общественного; б – промышленного

1- опорные колонны, 2- плиты перекрытия, 3- несущие и связевые ригели, 4- диафрагмы жесткости путей эвакуации, 5- технологическая шахта, 6- лестничные марши, 7- самонесущие наружные стены

В каркасных зданиях вся нагрузка передается на каркас, то есть систему связанных между собой вертикальных элементов (колонн) и горизонтальных (прогонов и ригелей).
Каркасы , применяемые в гражданском строительстве, классифицируются по материалам :

    железобетонный каркас, выполняемый в сборном, монолитном или сборно-монолитном вариантах;

    металлический каркас, часто применяемый при строительстве общественных и многоэтажных гражданских зданий, возводимых по индивидуальным проектам;

    деревянный каркас в зданиях не выше двух этажей.

железобетонный каркас

металлический каркас

деревянный каркас

По составу и расположению ригелей в плане здания в каркасных зданиях
применяют четыре конструктивные схемы:

— I с поперечным расположением ригелей ;

— II с продольным расположением ригелей ;

— III с перекрестным расположением ригелей ;

— IV безригельная .

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6х6 м (при дополнительной сетке 6х3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

— элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

— ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Конструктивная схема здания с безригельным каркасом:

1 – колонны каркаса; 2 – сборный или монолитный настил перекрытия

Каркасная система зданий: а - с поперечным расположением ригелей; б - с продольным расположением ригелей; в - безригельное решение; 1 - самонесущие стены; 2 - колонны; 3 - ригели; 4 - плиты междуэтажных перекрытий; 5 - надколонная плита перекрытия; 6 - межколонные плиты; 7 - панель-вставка

Каркас с поперечным расположением ригелей целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.

Конструктивная схема каркасного здания с поперечным расположением ригелей

Конструктивная схема каркасного здания с продольным расположением ригелей

Четыре типа конструктивных каркасных систем:
а — с поперечным расположением ригелей;
б — с продольным расположением ригелей;

В — с перекрестным расположением ригелей;

г — с безригельным каркасом, при котором ригели отсутствуют, а плиты перекрытий опираются или на капители колонн, или непосредственно на колонны.

1- фундамент; 2 – панели ограждения; 3 – колонны; 4 – продольные ригели; 5 – плиты перекрытия (настил); 6 – поперечные ригели

Каркас с продольным расположением ригелей используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна. В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны.


По характеру статической работы каркасные конструктивные системы гражданских зданий делятся на:

рамные — с жестким соединением несущих элементов (колонны, ригели) в узлах в ортогональных направлениях плана здания. Каркас воспринимает все вертикальные и горизонтальные нагрузки.

рамно-связевые — с жестким соединением в узлах колонн и ригелей в одном на правлении плана здания (создание рамных конструкций) и вертикальными связями, расставленными в перпендикулярном направлении рамам каркаса. Связями служат стержневые элементы (крестовые, портальные) или стеновые диафрагмы, соединяющие соседние ряды колонн. Вертикальные и горизонтальные нагрузки воспринимаются рама ми каркаса и вертикальными пилонами жестких связей.

связевые — отличаются простотой конструктивного решения соединений колонн с ригелями, дающее подвижное (шарнирное) закрепление. Каркас (колонны, ригели) воспринимает только вертикальные нагрузки. Горизонтальные усилия передают на связи жесткости — ядра жесткости, вертикальные пилоны, стержневые элементы.

Рамная система
каркасных зданий обладает большой жесткостью, устойчивостью и создает максимальную свободу планировочных решений. Система обеспечивает надежность в восприятии нагрузок и равномерность деформаций рам, расположенных в здании в продольном и поперечном направлениях. Недостаток (при сборном железобетонном каркасе) — сложность в унификации узловых соединений из-за разных величин усилий в них по высоте здания. Такое решение железобетонного каркаса наряду со стальным находит применение в сложных грунтовых условиях и в сейсмических районах.

При изготовлении рамного каркаса из сборного железобетона применяется разрезка его несущих элементов на Г -, Т — и Н -образные элементы, позволяющая перенести узловые соединения в наименее напряженные участки — места нулевых изгибающих моментов от вертикальных нагрузок.

Рамно-связевая система обеспечивает пространственную жесткость за счет совместной работы поперечных рам, вертикальных диафрагм жесткости и перекрытий, выполняющих функцию жестких горизонтальных дисков. Вертикальные нагрузки передают на каркас как на рамную систему. Горизонтальные нагрузки, действующие перпендикулярно плоскости рам, воспринимают вертикальные диафрагмы жесткости и диски перекрытий, а нагрузки, действующие в плоскости рам, воспринимает рамно-связевой блок, состоящий из вертикальных диафрагм жесткости и рам каркаса.

В результате проведенных теоретических исследований доказано, что рамно-связевая система удовлетворяет условию минимального расхода материала в несущих вертикальных конструкциях при нулевой жесткости поперечных рам, то есть когда система превращается в чисто связевую.

Связевая система
все вертикальные нагрузки передает на стержневые элементы каркаса (колонны и ригели), а горизонтальные усилия воспринимают жесткие вертикальные связевые элементы (стеновые диафрагмы и ядра жесткости), объединенные между собой дисками перекрытий. В связевом каркасе ограничена прочность и жесткость стыков ригелей с колоннами. Узлы конструируют податливами с помощью стальных связей («рыбок»), ограничивающих защемление.

Внедрение связевой системы в производство элементов сборного железобетонного каркаса позволило провести широкую унификацию его основных элементов (колонн и ригелей) и их узловых соединений.

В 80-х годах прошлого столетия была разработана номенклатура индустриальных железобетонных изделий серии 1.020-1 (Серия 1.020-1/87 ), позволяющая возводить как гражданские, так и промышленные каркасно-панельные здания любой конфигурации и этажности. В состав номенклатуры серии помимо колонн и ригелей, включены панели перекрытий, диафрагм жесткости и наружных стен.

Из унифицированных элементов могут быть запроектированы каркасы с продольным и поперечным расположением ригелей.

Габаритные схемы компонуются на следующих условиях:

    оси колонн, ригелей и панелей диафрагм жесткости совмещены с модульными осями здания;

    шаг колонн в направлении пролета плит перекрытий равен 3,0; 6,0; 7,2, 9,0 и 12,0 м.

    шаг колонн в направлении пролета ригелей соответствует 3,0; 6,0; 7,2 и 9,0м.

    высота этажей в соответствии с назначением и укрупненным модулем ЗМ составляет 3,3; 3,6; 4,2; 6,0 и 7,2м.

Кроме того для квартирных и специализированных жилых домов (пансионаты, гостиницы, общежития и т.п.) высота этажей принимается равной 2,8 м.

Компоновка диафрагм жесткости может быть разнообразной, но предпочтительнее устройство пространственных связевых систем открытого или замкнутого сечений.

Пространственная жесткость каркасных зданий обеспечивается:

    совместной работой колонн, связанных между собой ригелями и перекрытиями и образующих геометрически не изменяемую систему;

    установкой между колоннами стенок жесткости или стальных вертикальных связей;

    сопряжением стен лестничных клеток с конструкциями каркаса;

    укладкой в междуэтажных перекрытиях (между колоннами) панелей-распорок.

Конструктивные элементы. Колонны имеют высоту в 2-4 этажа, что позволяет в зданиях, с соответствующей этажностью, применять бесстыковые колонны.

Наряду с бесстыковыми колоннами в номенклатуру включены следующие типы колонн:

    нижние высотой в два этажа и расположением низа колонны ниже нулевой отметки на 1,1м.;

    средние — высотой в три-четыре и верхние в один-три этажа.

Предусмотрены колонны сечением 30×30 см для зданий высотой до 5-ти этажей и колонны сечением 40х40см для всех остальных. Колонны выпускаются двухконсольнымии и одноконсольными. Двухконсольные колонны устанавливают по средним и крайним рядам при навесных панелях наружных стен. Одноконсольные колонны располагают по крайним рядам при самонесущих наружных стенах и по средним рядам при одностороннем примыкании стен-диафрагм жесткости в лестничных клетках. Стык осуществляется на сварке выпусков арматуры с последующим омоноличиванием и расположением его выше плоскости консоли на 1050 мм.

Ригели — таврового сечения с полкой понизу для опирания плит перекрытия, что уменьшает его конструктивную высоту. Стык ригеля с колонной выполняет со скрытой консолью и приваркой к закладным деталям консоли и колонны (частичное защемление).

Перекрытия — многопустотные плиты высотой 220 мм и пролетом до 9,0 м. Плиты типа 2Т применяют для пролетов 9 и 12 м. Элементы перекрытий разделяют на рядовые и связевые (плиты распорки). Связевые плиты перекрытия устанавливают между колоннами в направлении перпендикулярном ригелям, обеспечивая их устойчивость.

Перекрытия испытывают поперечный изгиб от вертикальных нагрузок и изгиб в своей плоскости от горизонтальных (ветровых, динамических) воздействий.

Необходимая жесткость горизонтального диска перекрытия, собираемого из сборных железобетонных элементов, достигается установкой связевых плит-распорок между колоннами, сваркой закладных соединительных элементов и устройством шпоночных швов из цементного раствора между отдельными плитами. Полученный жесткий горизонтальный диск, воспринимая все нагрузки, включает в совместную работу вертикальные диафрагмы жесткости.

Стены — диафрагмы жесткости монтируют из бетонных панелей высотой в этаж, толщиной 140 мм. и длиной, соответствующей расстоянию между колоннами в пределах, которых они установлены. При шаге колонн 7,2 и 9,0 м стены-диафрагмы проектируют составными из двух-трех панелей, с координационными размерами по ширине 1,2, 3,0 и 6,0 м. Они могут быть глухими или с одним дверным проемом. Элементы диафрагм жесткости между собой и элементами каркаса соединяют сваркой закладных деталей, не менее чем в двух местах по каждой стороне панели с последующим замоноличиванием.

Шаг диафрагм определяется расчетом, но не превышает 36,0 м.

Панели наружных стен могут быть запроектированы самонесущими или ненесущими (навесными) конструкциями. Разрезка стен на панели — двухрядная. В номенклатуру входят поясные простеночные, под карнизные, парапетные, цокольные панели.

Панели самонесущих стен устанавливают по цементно-песчаному раствору на цокольные или простеночные панели и крепят поверху к закладным деталям колонн. Панели ненесущих стен навешивают на ригели, консоли или опорные металлические столики колонн и закрепляют в плоскости перекрытия.

Привязка панелей самонесущих и несущих стен к каркасу единая — с зазором 20 мм между наружной гранью колонны и внутренней гранью панели наружной стены.

Изоляция стыков панелей решена по принципу закрытого стыка

Компактные в плане отапливаемые здания длиной до 150 м проектируют без температурных швов. Здания с изрезанным очертанием плана, приводящее к ослаблению горизонтальных дисков перекрытий, расчленяют на температурные блоки, длина которых увязана с членением объемной формы здания, но не превышает 60 м.

Как и в серии 1.020.1 каркас КМС-К1 собирают из колонн, ригелей, плит перекрытий, панелей жесткости и навесных панелей наружных стен.


Фрагмент фасада каркасного здания серии 1.020-1: А — схема разрезки наружной стены на панели; а — герметизация вертикальных стыков; б — крепление верха панели к колонне; \ — защитный слой; 2 — эластичная мастика; 3 — упругий шнур (гернит); 4 — колонна; 5 — кирпичная кладка; 6 — цементный раствор; 7 — наружная стеновая панель; 8 — стальные закладные детали; 9 — стальные соединительные элементы

Колонны — выполняют одно- и двух-этажными, единого сечения 400×400 мм, а их несущая способность меняется с изменением марок бетона и процента армирования переходом от гибкой (стержни) к жесткой (стальные профили) арматуре. В серии предусмотрены колонны рядовые, фасадные и колонны с вылетом консолей до 1,2 или 1,8 м., служащие опорами для плит балконов и лоджий.

Стык колонны располагают на 710 мм выше плиты перекрытия, что упрощает монтаж. При монтаже колонн применяют специальные кондукторы, обеспечивающие соосность. Соединение осуществляется ванной сваркой плоских торцов колонн, с последующей инъекцией цементного раствора.

Ригели — таврового сечения высотой 450, 600 и 900 мм (последний для пролетов в 12,0м). Колонну соединяют с ригелем при помощи его опирания на скрытую (в высоте ригеля) консоль и с частичным защемлением установленной по верхней полки ригеля специальной фасонки — «рыбки», а также сваркой с закладными элементами консоли колонны. Значения воспринимаемых таким узлом изгибающих моментов и растягивающих усилий ограничены пределом текучести «рыбки». Поэтому в расчетах при восприятии вертикальных нагрузок защемление ригеля на опоре не учитывают, рассматривая его как шарнирное соединение.

Различают ригели рядовые и фасадные. Ригель фасадный имеет Z -образную форму, которая диктуется особенностью его работы — опирание плит перекрытий на нижнюю полку с одной стороны и навеской наружных стеновых панелей на верхнею полку с другой стороны.

Перекрытия — выполняют из многопустотных настилов высотой в 220 мм. Настилы различают в соответствии с размещением в плане — рядовые, фасадные, настилы-распорки, сантехнические и доборные.

Для создания единого диска перекрытия боковые поверхности настилов имеют шпоночные углубления, которые (после их раскладки) замоноличивают, создавая шпоночные швы, воспринимающие сдвигающие усилия..

Стены жесткости — проектируют из железобетонных панелей высотой на этаж и толщиной в 180 мм. Они имеют одну или две полки для опирания настилов перекрытий. Соединение с несущими элементами каркаса осуществляют при помощи стальных сварных связей числом не менее двух по каждой стороне.

Панели наружных стен — могут иметь горизонтальную или вертикальную разрезку по фасадной плоскости здания.

При двухрядной (горизонтальной) разрезки панели наружных стен подразделяют на поясные (ленточные), простеночные и угловые.

Координационные размеры панелей наружных стен горизонтальной разрезки по длине соответствуют шагу колонн, а по высоте составляют — 1,2; 1,5; 1,8 и 3,0 м. Простеночные панели могут быть высотой в — 1,5; 1,8 и 2,1м, а шириной кратны модулю 300 мм.

При вертикальной разрезке — все размеры панелей по длине и высоте кратны модулю 300 мм.

Узел опирания панелей наружных стен унифицирован для разных систем разрезок на панели фасадных плоскостей. Панели опирают на несущую конструкцию перекрытия (ригель, или настил) на глубину в 100 мм и приваривают при помощи закладных и соединительных элементов на расстоянии 600 мм в плане от оси колонны. Верх панели крепят к колонне, так же с помощью сварки соединительных элементов.

Горизонтальные стыки панелей наружных стен осуществляются в четверть с нахлесткой в 75мм. Изоляция вертикальных и горизонтальных сопряжений панелей выполняется по принципу закрытого стыка

Система позволяет создать многовариантные объемно-планировочные решения за счет применения колонн с консолями больших вылетов (1,2 — 1,8 м) для создания лоджий, консольных ригелей с вылетом до 3,0 м, образующих выступающие объемы. Возможно устройство зальных помещений с пролетами в 18,0-24,0 м. Разнообразие архитектурных композиций зданий достигается применением двухрядной (горизонтальной) и вертикальной разрезки, так же различных вариантов защитно-отделочных слоев наружных стеновых панелей.


Каркас серии KMC — К1. Основные планировочные ситуации стен жесткостей и несущих конструкций перекрытий: Р — ригель рядовой; РФ — ригель фасадный; НВ — настил; НРВ -настил-распорка; НРФ — настил-распорка фасадная; МФ — фасадная стеновая панель; СЖ — стенка жесткости; 1 — колонна с плоскими стальными торцами; 2 — полуавтоматическая сварка под слоем флюса; 3 — стальная центрирующая прокладка; 4 — закладная деталь; 5 — соединительная планка; 6 — цементный раствор; 7 — соединительная пластина; 8 — монолитный армированный бетон; 9 — закладная деталь

Безригельный каркас. Основной архитектурный недостаток каркасных систем для применения их в гражданском строительстве являются выступающие в интерьер из плоскости перекрытий балки-ригели. Существуют конструктивные схемы каркасов позволяющие исключить этот недостаток:

Система, формирующаяся из сборных плит сплошного сечения, опираемых на колонны в угловых точках сетки колонн (система КУБ);

Каркасная система с предварительно-напряженной арматурой в скрытых риге лях, образуемых в построечных условиях (система КПНС).

Система безригельного каркаса КУБ - сборный безкапительный каркас, состоящий из колонн квадратного сечения и плоских плит перекрытий.

Сетки колонн 6×3 и 6×6 метров при необходимости могут увеличиваться до размеров 6х9 и 9х12 метров. Сечение колонн 30×30 см и 40×40 см высотой в один или несколько этажей с максимальной высотой до 15,3 м.

Плиты перекрытия в плане размером 2,8×2,8 м толщиной от16 до20 см. В зависимости от расположения, подразделяются на надколонные, межколонные и плиты-вставки. Членение перекрытия на сборные элементы сделано с таким расчетом, чтобы стыки плит располагались в зонах с наименьшей величиной (приближаемая к нулю) изгибающих моментов от вертикальных нагрузок.

Последовательность монтажа перекрытия на смонтируемые колонны ведется в следующем порядке: — устанавливаются и привариваются к арматуре колонн надколонные плиты, затем межколонные и, наконец, плиты-вставки. Межколонные и плиты-вставки имеют шпонки, позволяющие легко осуществить их соединения на сварке. После замоноличивания стыков создается пространственная жесткая конструкция.


Система безригельного каркаса (КУБ): а — общий вид; б — схема последовательности монтажа; в — схема разреза здания

Преимущество системы в отсутствии выступающих элементов в потолочной плоскости и в простоте монтажа, с помощью легких мобильных кранов.

Безригельная рамная или рамно-связевая каркасная система гражданских зданий высотой до 16 этажей рассчитана на вертикальные нагрузки на перекрытие в 1250 кг/ м 2 . При больших нагрузках (2000 кг/ м 2) ограничивают этажность здания 9-тью этажами.

Система обладает архитектурно-планировочными и конструктивными достоинствами. Гладкий потолок дает возможность гибко решать планировку внутреннего пространства создавать трансформируемые помещения. Консольные вылеты перекрытий обеспечивают вариантность пластических решений фасадов.

Безригельный каркас универсален — он с успехом применим, как в жилых зданиях, так и общественных (детских садах, школах, торговых предприятиях, спортивных и зрелищных) сооружениях и пр.

Система со скрытыми ригелями в плоскости перекрытия (КПНС) проектируется по связевой схеме из сборных элементов: колонн, плит, перекрытий и стен диафрагм жесткости. Связь между сборными элементами перекрытия осуществляется в результате устройства в построечных условиях монолитного ригеля с канатной напряженной арматурой, пропущенной через сквозные отверстия в колонне в ортогональных направлениях. Предварительное напряжение арматуры осуществляется на уровне этажных перекрытий, создавая двухосное обжатие плит перекрытия

Плиты перекрытия имеют высоту в 30 см и состоят из верхней плиты, толщиной в 6 см, и нижней — 3 см и перекрещенных бортовых ребер. При монтаже плиты перекрытий укладывают на временные капители колонн и опоры, которые устанавливают уже на смонтированный нижний уровень. Плиты перекрытия могут быть выполнены на ячейку с опиранием на колонны по 4 углам или разбиты на две плиты, соединенные монолитным армированным швом. Конструкция, собранная из сборных элементов колонн и плит перекрытий — работает как единая статическая система, воспринимающая все силовые воздействия, за счет сил сцепления, возникающих между отдельными сборными элементами, и напряжений стальных канатов.


Каркас со скрытыми ригелями (КПНС): А — схема сборки; Б — узел плана перекрытия у колонны; 1 — монолитный ригель; 2 — шов омоноличивания; 3 — канатная натяжная арматура: 4 — плита перекрытия; 5 – колонна

Значительным шагом назад от системы надежности и долговечности индустриального производства конструктивных элементов каркасных зданий стало возвращение на строительные площадки «мокрых» процессов с начала «нулевых» годов. Монолитные балочные и безбалочные каркасы имеют низкую степень технологичности, не позволяют возводить ограждающие конструкции апробированных типов.

Приемы конструктивных решений зданий

Проектирование конструкций здания любого назначения начинают с решения основной принципиальной задачи – выбора конструктивной системы здания исходя из функциональных и технико-экономических требований.

Конструктивная система – это взаимосвязанная совокупность вертикальных и горизонтальных несущих конструкций здания, которые, воспринимая все приходящиеся на него нагрузки и воздействия, совместно обеспечивают прочность, пространственную жесткость и устойчивость сооружения.

Выбор конструктивной системы определяет роль каждого несущего конструктивного элемента в пространственной работе здания.

Горизонтальные несущие конструкции (покрытия и перекрытия) воспринимают все приходящиеся на них вертикальные нагрузки и передают их вертикальным несущим конструкциям (стенам, колоннам и др.), которые, в свою очередь, передают нагрузки через фундамент на грунт (основание здания). Горизонтальные несущие конструкции, как правило, играют в здании роль жестких дисков – горизонтальных диафрагм жесткости. Они воспринимают и перераспределяют горизонтальные нагрузки и воздействия (ветровые, сейсмические) между вертикальными несущими конструкциями.

Горизонтальные несущие конструкции гражданских зданий высотой более двух этажей, как правило, однотипны и представляют собой железобетонный диск – сборный (из отдельных железобетонных сплошных, многопустотных или ребристых плит), сборно-монолитный или монолитный. Также в многоэтажных промышленных зданиях (реже – в гражданских зданиях) используют перекрытия по металлическим балкам (балочные) и профилированному стальному настилу. Исходя из противопожарных требований в ряде случаев такие перекрытия впоследствии замоноличивают бетоном.

Вертикальные несущие конструкции по сравнению с горизонтальными более разнообразны. Различают следующие виды вертикальных несущих конструкций:

Стержневые (стойки каркаса);

Плоскостные (стены, диафрагмы);

Объемно-пространственные элементы высотой в этаж (объемные блоки);

Внутренние объемно-пространственные полые стержни (открытого или закрытого сечения) на высоту здания (стволы жесткости);

Объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого сечения (оболочки).

Соответственно виду вертикальной несущей конструкции получили наименование пять основных конструктивных систем зданий:

- каркасная ;

- бескаркасная (стеновая);

- объемно-блочная;

- ствольная;

- оболочковая.

Наряду с основными широко применяют комбинированные конструктивные системы . В этих системах вертикальные несущие конструкции компонуют, сочетая различные виды несущих элементов – стены и колонны, стены и объемные блоки и др.

В соответствии с функциональными требованиями к объемно-планировочному решению в зданиях могут сочетаться различные структуры пространственных ячеек. Это влечет за собой и сочетание различных конструктивных систем в одном здании , например, бескаркасной для фрагмента здания ячеистой структуры и каркасной – для зальных помещений. Такое решение называется смешанной конструктивной системой здания .

Выбор конструктивной системы при проектировании основан на объемно-планировочных, архитектурно-композиционных и экономических требованиях, в соответствии с которыми определились области рационального применения каждой из конструктивных систем.

Бескаркасная (стеновая) система (рис. 3.1) – основа проектирования жилых домов различной этажности и назначения (квартирные дома, общежития, гостиницы, пансионаты и др.) и для разных инженерно-геологических условий. Выбор этой системы связан с относительной стабильностью объемно-планировочных решений жилых зданий и с ее технико-экономическими преимуществами. Благодаря этому расширяется применение бескаркасной системы и для массовых типов общественных зданий (школ, детских дошкольных учреждений, поликлиник и др.).

Рис. 3.1. Бескаркасная (стеновая) конструктивная система

1 – наружная несущая стена;

2 – внутренняя несущая стена;

3 – сборный настил перекрытия

Каркасная система (см. рис. 3.2) наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения. Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения этих требований компоновочные преимущества каркасных систем перед бескаркасными очевидны.

Рис. 3.2. Каркасная конструктивная система

1 – колонны каркаса; 2 – ригели каркаса; 3 4 – наружная навесная стеновая панель

Общий вид каркасных конструктивных систем общественного и промышленного зданий показаны на рис. 3.3.

Рис. 3.3. Общий вид зданий с каркасной конструктивной системой

а – общественного;б – промышленного

Объемно-блочная система (см. рис. 3.4) применяется при проектировании жилых зданий различных типов высотой до 16 этажей. Главное преимущество такой конструктивной системы – сокращение затрат труда при постройке зданий.


Рис. 3.4. Объемно-блочная конструктивная система

1 – монолитный железобетонный объемный блок (размером на комнату)

Ствольная система (см. рис. 3.5) обеспечивает свободу планировочных решений, поскольку пространство между стволом жесткости и наружными ограждающими конструкциями остается свободным от промежуточных опор. Относительно высокая жесткость здания позволяет использовать такую систему при проектировании жилых и общественных зданий, как правило, башенного типа с компактной (квадратной, круглой и т.п.) формой плана, высотой более 20 этажей. Возможно применение ствольной системы и для протяженных зданий, но в этих случаях конструктивная система таких зданий компонуется из нескольких стволов.

Наиболее целесообразны компактные в плане многоэтажные здания ствольной системы в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т.п.).


Рис. 3.5. Ствольная конструктивная система

1 – сборный или монолитный ствол жесткости; 2 – консольные междуэтажные перекрытия

Оболочковая система присуща уникальным и высотным (более 40 этажей) зданиям, поскольку обеспечивает существенной увеличение жесткости сооружения. Применение такой системы в качестве основной (а также в комбинации с каркасом) обеспечивает свободу планировочных решений, что позволяет применять ее для жилых и общественных зданий. Однако чаще всего такие здания проектируют многофункциональными. Оболочковая конструкция может совмещать несущие и ограждающие функции или дополняться наружными ограждающими конструкциями.

Рис. 3.6. Пример здания с оболочковой конструктивной системой

Помимо основных типообразующих признаков конструктивной системы, т.е. несущих вертикальных элементов, существуют дополнительные классификационные признаки внутри каждой из систем. Ими служат геометрические признаки – ­­­­­­­­­­­размещение вертикальных несущих конструкций в плане здания и расстояния между ними. Способ размещения несущих горизонтальных и вертикальных конструкций здания в пространстве называют конструктивной схемой.

При бескаркасной (стеновой) конструктивной системе , исходя из основных геометрических признаков, можно выделить следующие виды конструктивных схем (см. рис. 3.7):

- I продольно-стеновая ;

- II поперечно-стеновая :

а) с большим шагом несущих стен (2,4 ÷ 4,5 м);

б) с узким шагом несущих стен (6,0 ÷ 7,2 м);

в) со смешанным шагом ;

- III перекрестно-стеновая.

Рис. 3.7. Конструктивные схемы бескаркасных зданий

а – продольно-стеновая;

б – поперечно-стеновая;

в – перекрестно-стеновая

Продольно-стеновая конструктивная схема (см. рис. 3.7 а ) традиционна в проектировании зданий малой, средней и повышенной этажности. Редкое расположение поперечных стен-диафрагм жесткости (через 25 – 40 м) обеспечивает свободу планировочных решений в зданиях, поэтому эту схему применяют при проектировании жилых и общественных зданий различного назначения.

Поперечно-стеновая конструктивная схема (см. рис. 3.7 б ) менее гибкая в планировочном отношении, чем продольно-стеновая схема. Поэтому наиболее часто ее применяют при строительстве жилых зданий, реже – массовых типов общественных зданий (детских учреждений, школ и т.п.). Поперечно-стеновая схема (особенно с большим шагом поперечных несущих стен) допускает возможность частичной перепланировки внутреннего объема зданий в процессе эксплуатации, а также размещения небольших встроенных нежилых помещений в первых этажах жилых домов.

в ) присущи малые размеры конструктивно-планировочных ячеек (около 20 м 2), что ограничивает область ее применения только жилыми зданиями. Частое расположение поперечных стен делает трансформацию планов зданий трудноосуществимой. Разнообразию планировочных решений в проектировании домов на основе этой схемы способствует использование нескольких размеров шагов поперечных стен (например, 3,0; 3,6 и 4,2 м) в различных сочетаниях. Благодаря высокой пространственной жесткости перекрестно-стеновая схема широко распространена в проектировании многоэтажных зданий, а также зданий, строящихся в сложных геологических условиях, а также в сейсмически опасных районах.

В каркасных зданиях применяют четыре конструктивные схемы:

- I с поперечным расположением ригелей ;

- II с продольным расположением ригелей ;

- III с перекрестным расположением ригелей ;

- IV безригельная .

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6 ´ 6 м (при дополнительной сетке 6 ´ 3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

Элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

Ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Каркас с поперечным расположением ригелей (см. рис. 3.8) целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.


Рис. 3.8. Конструктивная схема каркасного здания с поперечным расположением ригелей

Каркас с продольным расположением ригелей (см. рис. 3.9) используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

Рис. 3.9. Конструктивная схема каркасного здания с продольным расположением ригелей

Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна.

Рис. 3.10. Конструктивная схема здания с безригельным каркасом

1 – колонны каркаса; 2 – сборный или монолитный настил перекрытия

В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны (см. рис. 3.10).

В комбинированных конструктивных системах может применяться различное сочетание вертикальных несущих конструкций, которые используются в основных конструктивных системах. На практике наиболее распространены следующие виды конструктивных схем в зданиях с комбинированными системами:

1) Неполный каркас (см. рис. 3.11). Такую схему выбирают исходя из местных сырьевых и производственных условий применения массивных конструкций наружных стен.

Рис. 3.11. Конструктивная схема здания с неполным каркасом (план)

а – плиты перекрытия опираются на ригели каркаса и на наружную несущую стену;

б – ригели каркаса опираются на колонны и на наружную несущую стену

1 – колонны каркаса; 2 – ригели; 3 – сборный настил перекрытия; 4 – несущая стена

2) Схема, в которой каркас расположен в пределах первого этажа (или нескольких этажей), а выше здание имеет стеновую конструктивную систему (см. рис. 3.12).

Рис. 3.12. Пример комбинированной конструктивной системы (разрез)

1 – колонны каркаса; 2 – продольно расположенные ригели; 3 – сборный настил перекрытия; 4 – несущие стены

Изобретение относится к области строительства, в частности к способу повышения несущей способности безригельного монолитного железобетонного каркаса. Технический результат заключается в обеспечении повышенной несущей способности каркаса. Способ включает соединение колонн с плитами перекрытия и размещение арматурных элементов. Перераспределяют усилия в местах сопряжения колонн с перекрытиями, создавая единые конструктивные элемент-узлы. Условными границами элемент-узлов на плане являются линии расчетных нулевых изгибающих моментов в перекрытиях вокруг колонн. Условными границами элемент-узлов по вертикали являются сечения колонн, расположенные посередине высоты этажей. Конструкцией элемент-узла задают эксцентриситет передачи вертикальной нагрузки на колонны. Формируют каркас из единых конструктивных элементов-узлов, объединяя их в пространственный каркас непрерывной и закольцованной в радиальных направлениях через смежные перекрытия и колонны арматурой. 7 ил.

Рисунки к патенту РФ 2490403

Способ повышения несущей способности безригельного монолитного железобетонного каркаса относится к области строительства и может быть использован при возведении жилищных, культурно-бытовых и промышленных объектов, в том числе и с пролетами перекрытий более 9-ти метров, при различных типах сечения колонн, в высотном монолитном строительстве, в том числе, в районах с повышенной сейсмической активностью.

Известны традиционные способы сборки железобетонных безригельных каркасов из колонн и плоских перекрытий, при пересечении которых, как правило, арматура колонн не связана с арматурой перекрытия. Вследствие чего, для повышения несущей способности каркаса, при восприятии нагрузки, с увеличением размера пролета перекрытия, увеличивают толщину плиты и/или сечение колонны, а так же густо армируют приколонную зону перекрытия.

Известно, что при бетонировании, как правило, швы располагают в уровне верхней и нижней плоскостей плиты перекрытия, то есть плиты пересекают швами бетонирования колонны.

Известно, что стык продольной арматуры колонн осуществляют преимущественно внахлест и в теле колонны, что приводит к бесполезному перерасходу арматуры, особенно с увеличением диаметра арматуры.

Если, при традиционной системе армирования, при увеличении шага колонн и нагрузок на перекрытие, при сечении колонны 400×400 и толщине плиты 200 мм, в результате расчета получаем расчетную арматуру в верхней растянутой зоне плиты перекрытия: Ax+Ay=100 см 2 , где Ax, Ay - расчетные значения арматуры по взаимно перпендикулярным направлениям, то разместить такое количество арматуры в растянутой зоне плиты просто невозможно.

Известен «Способ возведения каркаса безригельного многоэтажного здания» по патенту RU 2134752 от 21.01.1998, опубликовано 20.08.1999, МПК 6 E04B 1/18, заключающийся в монтаже рядовых и наружных колонн, установке на них надколонных плит перекрытий, и монтаже межколонных и центральных плит перекрытий, при этом, после монтажа перекрытия верхнего этажа здания на верхнем этаже или на верхних этажах дополнительно монтируют диагональные подкосы, соединяющие в пределах каждого из этих этажей низ наружных колонн с верхом соседних рядовых колонн или верх наружных колонн с низом соседних рядовых колонн и расположенные нормально к соответствующему им фасаду здания, а затем удаляют размещенные под диагональными подкосами в пределах первого этажа часть наружных колонн.

Данный способ сложен в использовании за счет дополнительных подкосов, и не позволяет возводить здания с большими пролетами перекрытий.

Известен «Способ возведения безригельного каркаса здания» по патенту RU 2206674 от 11.10.2001, опубликовано 20.06.2003, МПК 7 E04B 1/18, E04B 1/22, включающий монтаж колонн и плит перекрытий, замоноличивание стыков между колоннами и плитами, пропуск арматуры сквозь колонны между плитами во взаимно перпендикулярных направлениях и натяжение ее, выдержку до набора бетоном стыка между колоннами и плитами передаточной прочности с последующей передачей усилия натяжения на бетон по периметру здания и омоноличиванием швов между плитами, при этом, после набора бетоном стыка между колоннами и плитами передаточной прочности, усилие натяжения арматуры на бетон передают попеременно во взаимно перпендикулярных направлениях поэтапно - сначала 30-40% общего усилия натяжения, затем 60-75% общего усилия натяжения, с последующим полным отпуском натяжения.

Данный способ также сложен в использовании за счет того, так, как требует дополнительного натяжения арматуры на бетон, и нет конструктивной связи колонн с перекрытием.

Наиболее близким является «Способ повышения несущей способности безбалочного монолитного железобетонного перекрытия» по патенту RU 2394140 , от 09.06.2009, опубликовано 10.07.2010, МПК E04G 23/02, Е04В 5/43, включающий размещение на соединенной с колонной плите перекрытия, которая снабжена продольной арматурой усиливающих элементов, при этом в приколонной зоне плиты перекрытия выполняют вертикальные отверстия, в которые устанавливают усиливающие элементы в виде набора стержней с анкерными элементами на концах, образующих не связанную с продольной арматурой поперечную арматуру, и заливают раствор безусадочной расширяющейся бетонной смесью; приколонная зона перекрытия размещения вертикальных стержней поперечной арматуры в плане имеет форму четырех прямоугольников, одна сторона каждого из которых примыкает к колонне и равна ширине последней, а другая сторона превышает в 1,5-3,5 раза толщину плиты перекрытия; диаметр отверстий, выполненных в плите перекрытия, в 1,5-2,5 раза больше диаметра стержней поперечной арматуры, при этом отверстия снизу выполнены глухими с донышком или снабжены пробкой; приколонная зона перекрытия размещения вертикальных стержней поперечной арматуры в плане имеет форму описанного вокруг колонны квадрата, сторона которого равна сумме ширины колонны и удвоенного определяющего размера приколонной зоны - расстояния между внешней границей приколонной зоны и колонной, превышающего в 1,5-3,5 раза толщину плиты перекрытия.

Данный способ повышения несущей способности безбалочного монолитного железобетонного перекрытия усиливает только приколонную часть перекрытия и только дополнительной поперечной арматурой, не создавая единого узла сопряжения колонны с перекрытием.

Задачей предлагаемого технического решения является обеспечение повышенной несущей способности монолитного железобетонного каркаса при возведении жилищных, культурно-бытовых и промышленных объектов, в том числе и с пролетами перекрытий более 9-ти метров, без предварительного напряжения арматуры, при различных типах сечения колонн, в высотном монолитном строительстве, в том числе, в районах с повышенной сейсмической активностью.

Задача решена за счет способа повышения несущей способности безригельного монолитного железобетонного каркаса, включающего соединение колонн с плитами перекрытия, и размещение арматурных элементов, при этом, повышают несущую способность каркаса, путем перераспределения усилий в местах сопряжения колонн с перекрытиями, создавая единые конструктивные элемент-узлы, условными границами которых являются, на плане - линии расчетных нулевых изгибающих моментов в перекрытиях вокруг колонн, а по вертикали - сечения колонн расположенные посередине высоты этажей; конструкцией элемент-узла задают эксцентриситет передачи вертикальной нагрузки на колонны; формируют каркас из единых конструктивных элемент-узлов, объединяя их в пространственный каркас непрерывной и закольцованной в радиальных направлениях, через смежные перекрытия и колонны, арматурой.

Способ повышения несущей способности безригельного монолитного железобетонного каркаса, путем перераспределения усилий в местах сопряжения колонн с перекрытиями, позволяет увеличить сопротивление взаимному повороту колонн и перекрытий в местах сопряжения, и повысить жесткость каркаса по всем направлениям; увеличить сопротивление горизонтальным нагрузкам, таким как, ветер и пульсация ветра; регулируемым эксцентриситетом «е» запустить механизм автоматической разгрузки колонн; воспринимать изгибающие моменты от ветровых и пролетных нагрузок единым элементом-узлом высотой в целый этаж, а не отдельно колонной и перекрытием; перераспределить усилие продавливания перекрытия над колонной, так как, перекрытие ощущает опору не на колонну, а на значительно расширенную область, благодаря особой конфигурации арматурных стержней в нем, поскольку отгибы продольной арматуры нижней колонны, упираясь в отгибы продольной арматуры верхней колонны, создают эффект поддерживающей капители в теле плиты, в то же время, являясь надежными анкерами при восприятии изгибающих, приколонных моментов; повысить сейсмостойкость каркаса.

Способ повышения несущей способности безригельного монолитного железобетонного каркаса осуществляют в каркасе, изображенном на чертежах, где на фиг.1 - каркас в сборе, на фиг 2 - монолитный конструктивный элемент - узел с арматурой 9, на фиг.3 - арматура 9, 17, 18; на фиг.4 - конструктивный разрез по каркасу, на фиг.5 - раскладка арматуры в плане по перекрытию, на фиг.6 - монолитный конструктивный узел с арматурой 18, на фиг.7 - схема расположения равноудаленных колонн по принципу равностороннего треугольника.

На фиг.1, 2, 3, 4, 5, 6, 7 изображены: каркас 1 монолитный железобетонный безригельный в сборе, жесткий конструктивный элемент-узел 2, колонна 3, перекрытие 4, линия 5 расчетных нулевых изгибающих моментов в перекрытиях, сечение 6 колонн с наименьшими изгибающими моментами, место расположения швов бетонирования, армирование 7 радиального перекрытие, армирование 8 концентрическое, продольная арматура 9 колонной части узла с отгибами в плитную часть узла, растянутая приколонная зона 10 плитной части узла, зона 11 плиты перекрытия, растянутая пролетная, арматура 12 конструктивная, стык 13 отогнутой части продольной арматуры колонной части элемента-узла в верхней растянутой приколонной плитной части элемента-узла, консольные свесы 14 перекрытия, кольцевая распределительная арматура 15, эксцентриситет «е» 16 передачи нагрузки перекрытия на колонну, продольная арматура 17 колонной части узла с отгибами в плитную часть узла, продольная арматура 18 колонной части узла с отгибами в плитную часть узла, колонная часть 19 элемента-узла, плитная часть 20 элемента-узла.

Способ повышения несущей способности безригельного монолитного железобетонного каркаса осуществляют при его сборке следующим образом.

Устанавливают опалубку перекрытия 4 текущего этажа. Под этой опалубкой устанавливают секции замковой опалубки на верхнюю часть колонн, от сечения 6 текущего этажа.

Формируют конструктивно организованный элемент-узел 2, из колонной части 19 и плитной части 20, вокруг центра, расположенного в месте пересечения центральной оси колонны 3 с плитой перекрытия 4, по вертикали - из половины колонны текущего этажа и половины колонны следующего этажа, с условными границами по сечению 6 колонн расположенных посередине высоты этажей, а на плане - из фрагмента перекрытия вокруг колонн, с условными границами по линии 5 расчетных нулевых изгибающих моментов в перекрытиях, сопрягая плитную и колонную части, объединенных радиально направленной продольной арматурой 9, или 17, или 18 колонн, отгибами в плитную часть элемента-узла, при этом создают условия для перераспределения усилии в местах сопряжения колонн с перекрытиями, повышая несущую способность каркаса.

Арматура, с особой конфигурацией отгибов 9, 17, 18, является основной образующей арматурного каркаса элемента-узла 2.

В растянутой приколонной зоне 10 плитной части элемента-узла 2 арматура 9, и/или 17, и/или 18, отгибами для нижнего и для верхнего этажа, жестко соединяют с вертикальным нахлестом.

Наличие у арматуры 9, 17, 18, отгибов в верхнюю растянутую приколонную зону 10 плитной части элемента-узла 2, задает, всегда присутствующий и регулируемый проектными решениями, эксцентриситет «е» 16, передачи вертикальной нагрузки перекрытия на колонну.

Наличие эксцентриситета «е» 16 передачи вертикальной нагрузки на колонную часть 3 элемента-узла 2, при жестком стыке 13 и изогнутой формы детали 9 или 17 или 18:

Создает момент в колонной части арматуры 9 или 17 или 18, выдергивающий арматуру вверх, то есть в арматуре 9 или 17 или 18 создается разгружающее колонну 3 усилие, направленное вверх;

Обеспечивает автоматическую работу механизма разгрузки: при увеличении количества этажей увеличивается и разгружающий момент в колоннах 3 нижележащих этажей.

Собранный пространственный арматурный каркас для формирования элемента-узла 2 устанавливают своими отгибами арматуры 9, и/или 17, и/или 18, на такой же пространственный арматурный каркас, выступающий из колонны 3 текущего этажа, на отгибы арматуры 9, и/или 17, и/или 18,

Отгибы продольной арматуры 9, или 17, или 18, нижней колонны (фиг.2, фиг.4, фиг.6), упираясь в отгибы продольной арматуры 9 или 17 или 18 верхней колонны (фиг.2, фиг.4, фиг.6) создают эффект поддерживающей капители в теле плиты, в то же время являясь надежными анкерами при восприятии изгибающих приколонных моментов. При этом перекрытие при работе ощущает опору не на колонну, а на значительно расширенную область.

Сваривают отгибы в нахлесте арматуры 9, и/или 17, и/или 18, текущего и следующего этажа. Далее раскладывают радиальную арматуру 7, сваривая ее с арматурой 9, или 17, или 18, (фиг.2), устанавливают концентрическую арматуру 8 в пролете перекрытия (фиг.2, фиг.6), и конструктивную арматуру 12, то есть формируют каркас из единых конструктивных элементов-узлов, объединяя их в пространственный каркас непрерывной и закольцованной в радиальных направлениях, через смежные перекрытия и колонны, арматурой, создавая непрерывную систему колонна-перекрытие-колонна-перекрытие, закольцованную смежными перекрытиями и колоннами радиальным армированием (см. фиг.4).

Затем устанавливают секции опалубки колонн 3 на половину следующего этажа и бетонируют перекрытие 4 текущего этажа с половиной колонны 3 текущего этажа и половиной колонны 3 следующего этажа, то есть элементы-узлы 2 бетонируются целиком за одну захватку между, расположенными посередине высоты этажей, сечениями 6 колонн 3, что резко повыщает несущую способность каркаса.

Несущая способность безригельного монолитного железобетонного каркаса повышается при работаете элемента-узла 2, следующим образом.

Основной характеристикой элемента-узла 2 является эксцентриситет «е» 16 передачи нагрузки перекрытия на колонну.

Пролетные вертикальные нагрузки, действующие на перекрытие, передаются через арматуру 9 или 17 или 18 на колонну 3 с эксцентриситетом «e» 16. При этом, на каждом этаже в продольной арматуре колонн, кроме усилия сжатия N возникают растягивающие усилия от изгибающего момента, равного М=Ne. (фиг.4)

Вследствие наличия эксцентриситета 16 и непрерывности, закольцованности с соседствующим этажом радиального армирования колонна-перекрытие-колонна-перекрытие, (фиг.4) пролетные нагрузки на перекрытие растягивают радиальную арматуру, в том числе и в колонной зоне, создавая при этом разгрузочный момент в арматуре колонны. Учитывая это, можно уменьшить расход армирования колонн.

При этом, при одинаковых параметрах этажей и нагрузках и эксцентриситетах, в арматуре колонн нижнего этажа возникнут усилия сжатия N=nN, и изгибающий момент M=nNe, где n - количество этажей.

Если, при традиционном способе сборки каркаса изгибающий момент над колонной совершал только разрушающую работу, то в предлагаемом техническом решении, изгибающий момент М, созданный эксцентриситетом «е», благодаря особой форме арматуры 9 или 17 или 18, стремится выдернуть арматуру вверх, то есть создается вертикальное усилие, направленное вверх, и противоположное вертикальной нагрузке на каркас.

Благодаря этому, в каркасе постоянно работает эффект саморазгружения в колоннах, причем с ростом количества этажей, в нижних этажах автоматически увеличивается и разгружающий эффект.

Благодаря вертикальному нахлесту отгибов продольной арматуры 9, или 17, или 18, колонн 3, в растянутой приколонной зоне 10 плитной части элемента-узла 2, создается дополнительная жесткость сечения арматуры при восприятии изгибающего момента (фиг.4).

Благодаря жесткому стыку 13 отгибов продольной арматуры колонн и дальнейшим его разветвлением в колонны верхнего и нижнего этажа, увеличивается сопротивление изгибающему моменту в направлении от стыка 13 к колонне 3, за счет увеличения расстояния между сечениями отгибов 9 верхней и нижней колонн.

Способ повышения несущей способности безригельного монолитного железобетонного каркаса путем перераспределения усилий в местах сопряжения колонн с перекрытиями позволяет:

Увеличить сопротивление взаимному повороту элементов (колонн и перекрытий) в местах сопряжения и повысить жесткость каркаса по всем направлениям;

Увеличить сопротивление горизонтальным нагрузкам (ветер, пульсация ветра);

Регулируемым эксцентриситетом «е» запустить механизм автоматической разгрузки колонн;

Перераспределить изгибающие моменты перекрытий, которые воспринимаются уже не колонной, а элементом-узлом, и перераспределить усилие продавливания перекрытия над колонной, так как, перекрытие ощущает опору не на колонну, а на значительно расширенную область, благодаря особой конфигурации арматурных стержней в нем, поскольку отгибы продольной арматуры нижней колонны (фиг.2, фиг.4, фиг.6), упираясь в отгибы продольной арматуры верхней колонны (фиг.2, фиг.4, фиг.6) создают эффект поддерживающей капители в теле плиты, в то же время являясь надежными анкерами при восприятии изгибающих приколонных моментов.

Техническим эффектом является обеспечение повышенной несущей способности монолитного железобетонного каркаса при возведении жилищных, культурно-бытовых и промышленных объектов, в том числе и с пролетами перекрытий более 9 метров, без предварительного напряжения арматуры, при различных типах сечения колонн, в высотном монолитном строительстве, в том числе, в районах с повышенной сейсмической активностью, путем перераспределения усилий в местах сопряжения колонн с перекрытиями, создавая единые конструктивные элемент-узлы, условными границами которых являются, на плане - линии расчетных нулевых изгибающих моментов в перекрытиях вокруг колонн, а по вертикали - сечения колонн расположенные посередине высоты этажей; конструкцией элемент-узла задают эксцентриситет передачи вертикальной нагрузки на колонны; формируют каркас из единых конструктивных элементов-узлов, объединяя их в пространственный каркас непрерывной и закольцованной в радиальных направлениях, через смежные перекрытия и колонны, арматурой.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ повышения несущей способности безригельного монолитного железобетонного каркаса, включающий соединение колонн с плитами перекрытия и размещение арматурных элементов, отличающийся тем, что повышают несущую способность каркаса путем перераспределения усилий в местах сопряжения колонн с перекрытиями, создавая единые конструктивные элемент-узлы, условными границами которых являются на плане линии расчетных нулевых изгибающих моментов в перекрытиях вокруг колонн, а по вертикали - сечения колонн, расположенные посередине высоты этажей; конструкцией элемент-узла задают эксцентриситет передачи вертикальной нагрузки на колонны; формируют каркас из единых конструктивных элементов-узлов, объединяя их в пространственный каркас непрерывной и закольцованной в радиальных направлениях через смежные перекрытия и колонны арматурой.

Монолитные каркасы проектируют рамными или рамно-связевыми (с устройством монолитных диафрагм жесткости).

В зависимости от решения ригелей (балок) монолитные каркасно-ригельные системы могут быть двух типов: с главными и второстепенными балками в разных направлениях; с балками одинакового значения в двух или трех направлениях (с перекрытиями кессонного типа).

В первом типе каркаса второстепенные балки опираются на монолитно связанные с ними главные балки, а те, в свою очередь, - на колонны (см. рис. 5.3).Компоновка второстепенных и главных балок в плане может быть различной (при продольном или поперечном их расположении). При выборе направления главных балок учитывают назначение здания, пространственную жесткость каркаса и др. требования.

Пролеты главных балок 6-9 (12) м, высота поперечного сечения 1/8-1/15 от пролета, а ширина - 0,4-0,5 высоты.

В каждом пролете главной балки располагают от одной до трех второстепенных балок. По осям колонн также располагают второстепенные балки. Их пролеты - 5-7 м, высота поперечного сечения - 1/12-1/20 от пролета, ширина - 0,4-0,5 от высоты.

Пролеты монолитной плиты перекрытия равны шагу второстепенных балок и составляют 2-3 м, а толщина плиты, в зависимости от нагрузки, выбирается в пределах 1/25-1/40 пролета и чаще всего составляет 80-100 мм.

Фрагменты разрезов

Рис. 5.3. 1 - колонна; 2 - главная балка; 3 - второстепенная балка; 4 - монолитная плита перекрытия

Каркасы с частым расположением балок (1-2 м) в двух или трех направлениях с одинаковым шагом и высотой называют каркасами с кессонными перекрытиями (см. рис. 5.4).Их преимущества заключаются в сравнительно меньшей высоте перекрытия (балок) и высокой архитектурной выразительности потолков общественных зданий

Рис. 5.4. Монолитные железобетонные каркасы с перекрытиями кессонного типа: а - конструктивно-планировочные ячейки; б - фрагмент разреза

К числу перспективных можно отнести суперкаркасную систему этажерочного типа (рис. 5.5),при которой пространственная жесткость здания обеспечивается так называемым суперкаркасом, представляющим собой несколько коробчатых пилонов (стволов), соединенных между собой мощными ростверками в нескольких уровнях по высоте здания. На ростверки (как на полки этажерки) опираются многоэтажные каркасы, которые могут иметь различные планировочные и конструктивные решения. Каркасы этажерочного типа являются наиболее пер­спективными для зданий очень большой этажности (сверхвысотных).

Рис. 5.5. Конструктивная схема каркаса этажерочного типа: а - схема фасада; б - схема типового этажа; в - схема ростверка; 1 - коробчатый пилон; 2 - ростверк; 3 - каркасно-ригельная структура

Безригельные каркасы

Безригельный каркас - конструктивная система с плоскими перекрытиями, опирающимися непосредствен­но на колонны без вспомогательных балок-ригелей.

Безригельные каркасы в архитектурном отношении имеют значительные преимущества:

Плоские перекрытия имеют общую высоту в 2-3 раза меньшую, чем перекрытия в каркасно-ригельных системах;

Перекрытия с гладкими потолками способствуют применению свободной планировки и трансформации помещений путем устройства мобильных перегородок, не связанных жестко с перекрытиями;

Консольные участки перекрытий по периметру позволяют выполнять более сложные конфигурации фа­садных плоскостей, устраивать лоджии, террасы, веран­ды без дополнительных конструктивных элементов;

Наличие гладкого потолка позволяет отказаться от дорогостоящих подвесных потолков.

Безригельные каркасы имеют и технико-экономические преимущества: упрощается монтаж опалубки благодаря отсутствию ригелей (при монолитном способе производства), уменьшается площадь последующей обработки потолка и упрощаются отделка, прокладка под потолком трубопроводов, устройство теплоизоляции и т.д.

Наряду с отмеченными преимуществами безригельные системы имеют недостатки, препятствующие массовому их распространению в практике строительства: величины пролетов безбалочных перекрытий более ограничены, чем в традиционных ригельных системах; не во всех случаях изготовление плоских перекрытий дешевле и проще ригельных; усложнены расчет и оценка действи­тельной работы конструкций перекрытий.

Однако эти недостатки, в основном конструктивного характера, при дальнейшем совершенствовании систем могут быть устранены. Архитектурные качества безригельных систем все больше привлекают внимание архитекторов и конструкторов. Многочисленные поиски специалистов разных стран привели к различным конструктивным решениям. Многие варианты безригельного каркаса прошли экспериментальную проверку и вошли в строительную практику.

Несколько предложений по безригельным конструкциям разработаны в Украине. Среди них - грибовидный каркас, примененный в проектах различных типов общественных зданий (рис. 12.79).

Грибовидный каркас вписывается в структурную сетку на основе равностороннего треугольника со стороной 3,2 м и состоит из двух основных элементов: колонны и шестиугольной плиты перекрытия. Каждая плита опирается в центре на колонну, образуя своеобразный грибок. Примыкая друг к другу боковыми гранями, грибки объединяются в сотовую структуру и после сварки и замоно-личивания превращаются в единую пространственную систему. Благодаря частому шагу колонн и пространственной работе каркаса высота ребер плит доведена до 15 см, а вся толщина перекрытия с конструкцией пола составляет 20 см.

Из шестигранных элементов грибовидного каркаса можно создавать самые разнообразные архитектурно-конструктивные композиции. Несмотря на художественные достоинства, эта разновидность каркаса имеет серьезный планировочный недостаток, ограничивающий его применение. Частый шаг колонн, расположенных в шахматном порядке, затрудняет функциональное решение большинства типов зданий, особенно при широком корпусе.

Модификация этой системы привела к варианту каркаса, в котором, наряду с основными плитами перекрытий, опирающимися центрично на колонны, имеются пролетные плиты, опертые на основные (рис. 12.79 б). Введение пролетных плит перекрытий позволило резко увеличить размер треугольной планировочной сетки (с 3,2 до 6,6 м), что значительно улучшило архитектурные качества каркаса.

Рис. 12.79. Безригельный грибовидный каркас с плоскими перекрытиями (Украина): а - на треугольной сетке колонн со стороной 3,2 м; б - на треугольной сетке со стороной 6,6 м; 1 - колонна; 2 - надколонная (капительная) плита; 3 - пролетная плита; 4 - доборная фасадная плита

Каркас с консольно-ригельными плитами (рис. 12.80) запроектирован для планировочной сетки 6 х 6 м и включает три основные сборные железобетонные элемента - колонну на этаж, надколонную ребристую плиту, асимметрично опирающуюся на колонну и торец соседней плиты, а также плиту-вкладыш.

Преимущества каркаса: простота узлов соединений и монтажа элементов, возможность взаимного смещения рядов колонн, т.е. трансформации планировочной сетки, и возведения зданий сложной конфигурации.

Рис. 12.80. Каркас с консольно-ригельными асимметрично опертыми надколонными плитами (Украина): а - общая схема; б - схема раскладки плит перекрытий; 1 - надколонная плита; 2 - плита-вкладыш; 3 - разрезка в местах, близких к линиям нулевых моментов

Сборно-монолитная система КУБ-2,5 (каркас универсальный безригельный) позволяет строить жилые дома, здания общественного назначения в едином конструктивном ключе, по единой технологии изготовления и монтажа строительных конструкций. Система представляет собой связевый каркас, состоящий из многоэтажных неразрезных колонн прямоугольного сечения и сплошных плит перекрытий (рис. 12.82). КУБ-2,5 соответствует уровню прогрессивных современных индустриальных каркасных конструкций. Отличительная особенность системы - монтаж плит перекрытия на колонну и соединение плит перекрытий между собой производятся без поддерживающих элементов.

Конструкция стыков колонн исключает сварку, так как стык колонн сечением 400х400 мм предусматривает принудительный монтаж, при котором фиксирующий стержень нижнего торца колонны должен войти в патрубок верхнего торца нижней колонны.

Конструкции каркаса предполагают высоту этажей 2,8; 3,0; 3,3 м при основной сетке колонн 6x6м. При необходимости высоту этажа можно увеличить до 6 м, а шаг колонн - до 12 м.

Конструкции КУБ-2,5 применяются при возведении общественных зданий в 1-3 этажа большой пролетности с техподпольем и жилых зданий в 4-22 этажа.

Рис. 12.82. Сборно-монолитный безригельный каркас КУБ-2,5: а - монтажная схема; б - стык колонн; в - узел «колонна-плита»

Монолитные безригельные каркасы проектируют на основе квадратной или прямоугольной сетки колонн, при этом соотношение между большим и меньшим пролетами ограничивается как 4/3. Наиболее рациональна квадратная сетка колонн 6x6м.

В монолитных безригельных каркасах сплошная железобетонная плита опирается непосредственно на колонны с капителями (рис. 12.83). Капители обеспечивают жесткое сопряжение плиты с колоннами и прочность плиты на продавливание по периметру колонны, уменьшают расчетный пролет плиты. Капители колонн конструируют в виде усеченной пирамиды с углом наклона граней 45° или двойной усеченной пирамиды ломаного очертания.

Толщину монолитной плиты принимают из условия ее необходимой жесткости в пределах 1/32-1/35 от величины наибольшего пролета. Плиты армируют плоскими или рулонными сварными сетками. При этом пролетные из­гибающие моменты воспринимаются сетками, уложенными в нижней зоне, а опорные - в верхней зоне плиты.

Один из эффективных вариантов монолитного безригельного каркаса для зданий с мелкоячеистой планировочной структурой - вариант с узкими колоннами в виде коротких стенок-диафрагм без капителей (рис. 12.84).

Колонны такого вида позволяют использовать их в качестве ограждающих элементов при одновременном уменьшении пролетов плит и увеличении жесткости каркаса. Колонны могут быть не только плоскими, ориентируемыми на плане в разных направлениях, но и пространственными (рис. 12.84 б), логично вписывающимися в планировочную структуру здания.

Данная система является открытой, позволяет создавать разнообразные объемно-планировочные решения жилых, учебных, административных и других зданий со средними по величине пролетами - до 7,5 м.

Рис. 12.83. Монолитный безригельный каркас: а - капители колонн и их армирование; б - расположение рабочей арматуры в плите (план); в - фрагмент разреза каркаса с изображением армирования плиты; 1 - рабочая арматура; 2 -конструктивная арматура


Рис. 12.84. Монолитный безригельный каркас с колоннами в виде коротких стенок-диафрагм: а - фрагменты фасада и плана здания коридорного типа; б - возможные формы сечений колонн; в - формы колонн переменного сечения по высоте

Конструктивная система безригельного сборного железобетонного каркаса КУБ-2,5 позволяет в разнообразных климатических условиях практически полностью обеспечить стоительство всего спектра городских сооружений: жилья, зданий административного, социально-культурного и бытового назначения, многоярусных гаражей, складов, некоторых производственных сооружений (с пролетами до 12 м).

Все железобетонные конструкции системы дают возможность проектировать (строить) здания вплоть до I степени огнестойкости, что обеспечивает использование ее для зданий различной высотности: коттеджи, малоэтажные и многоэтажные (до 75 метров) дома.

Минимальное количество вертикальных элементов каркаса и отсутствие ригелей позволяет создавать в границах несущих и ограждающих конструкций свободные планировки помещений различного назначения. Перегородки могут быть расположены в любом месте архитектурного плана как во время проектирования и строительства, так и во время эксплуатации здания. Система обеспечивает возможность перепланировок помещений в соответствии с любыми текущими потребностями в процессе эксплуатации здания без нарушения конструктивной устойчивости здания (дает свободу в организации на первых этажах в жилых домах офисов, магазинов, спортивно-оздоровительных и бытовых комплексов).

Несущий каркас здания состоит только из внутренних элементов (колонн, перекрытий и при необходимости связей или дифрагм). В качестве наружных ограждающих конструкций (стен) могут использоваться практически любые фасадные решения: облегченные теплоэффективные каменные (в т.ч. облицованные кирпичем), различные навесные панели, вентилируемые фасады, витражные ограждения и т. д.

Система «КУБ» позволяет консольно выносить плиты перекрытия за оси крайних колонн (до 1,5 м) и придавать плитам по их наружному обрезу практически любую форму в плане. В систему заложены безграничные возможности по обогащению пластики фасадов, которые могут удовлетворить любые, самые изысканые вкусы, и ограничиваются только фантазией архитектора, запросами заказчика и требованиями норм.

Конструктивные особенности системы

На сегодняшний день на российском рынке конструктивная система безригельного каркаса "КУБ-2,5" является единственной, в которой безригельный каркас – полносборный.

Каркас здания (сооружения) в системе конструктивного безригельного каркаса представляет собой пространственную конструкцию, типа «этажерки» сборного, сборно-монолитного или монолитного исполнения. В качестве стоек каркаса служат колонны, роль ригелей выполняют плиты перекрытия, для элементов жесткости используютя связи либо диафрагмы. Лестницы, вентблоки, лифтовые шахты при этом могут быть применены любые, освоенные заводами-производителями. Несущая способность перекрытий позволяет использование каркаса в зданиях с интенсивностью нагрузок на этаж не более 1300 кг/м 2 (модификация КУБ-2,5К до 2500 кг/м 2).

В основе конструктивной системы «КУБ-2,5» заключен оригинальный узел сопряжения двух основных элементов – панели и колонны с использованием закладной детали – стальной обечайки специальной конструкции соединенной с арматурными каркасами, располагающимися в теле панели. Бетон в данном узле работает в условиях всестороннего сжатия, в следствие чего происходит его самоупрочнение. Это дало возможность избежать ванной сварки в стыке колонн, в узле присутствуют только монтажные швы.

Стыки элементов, из которых состоит безригельный каркас в целом, замоноличиваются, образуя рамную конструктивную систему, ригелями которой служат перекрытия.

Членение перекрытия запроектровано с таким расчетом, чтобы стыки панелей располагались в зонах, где величина изгибающих моментов равна нулю.

Важным преимуществом системы является возможность использования в колоннах бетонов повышенных классов (до В60), что сказывается на результатах армирования и сохранении типовых поперечных сечений колонн 400×400. Колонны, изготавливаемые на строительной площадке (в монолитном домостроении) могут иметь класс бетона до В30, а это накладывает на конструирование стоек соответствующие ограничения.

Наружные стены не являются несущими, под них не нужно устраивать фундаменты, их не требуется проектировать столь прочными, как это делается в зданиях бескаркасного типа. Нагрузка на основание каркаса на 25% ниже, чем в монолитном исполнении. Независимо от грунтовых условий объем фундаментов, необходимых для распределения усилий на основание от надземной части зданий, выполненных в конструкциях системы «КУБ-2,5» будет всегда минимальным, т.к. собственный вес каркаса также минимален за счет достигнутой оптимизации всех сечений.

Конструкции безригельного каркаса предназначены для применения в различных регионах России, в том числе в районах с сейсмичностью 7-9 баллов.

Прочность конструкций каркаса «КУБ-2,5» подтверждена техническими расчетами и многочисленными испытаниями:

  • Конструкции КУБ рассмотрены НТС Госкомархитектуры при Госстрое СССР и письмом № ИП-7-3691 от 19.09.1986 г. рекомендованы к применению;
  • ЦНИИСК им. Кучеренко Госстроя СССР, каркас КУБ рекомендован к применению (заключение от 15.03.1990 г.);
  • Лаборатория динамических испытаний ЦНИИЭП жилища под руководством Ашкинадзе Г.Н.

В последние годы в Росcии и за рубежом построены более тысячи объектов с использованием безригельного каркаса КУБ-2,5.

Особенности строительства в системе

Универсальная конструктивная система "КУБ-2,5" высоко индустриализирована, что выражается в высокой степени заводской готовности составляющих ее элементов. Все элементы производятся на заводах железобетонных изделий.

На строительной площадке выполняются только монтаж готовых элементов механизированными средствами, обеспечивая тем самым высокие темпы строительства.

Применяемая в системе заводская технология изготовления элементов зданий позволяет максимально перенести затраты труда строителей в цеховые условия, тем самым значительно уменьшая на строительной площадке риски как природных, так и человеческих факторов.

При разработке каркаса системы КУБ были применены решения, существенно сокращающие строительный процесс возведения каркаса здания:

  • монтаж вертикальных конструкций производится сразу на несколько этажей;
  • конструкция стыка колонн не требует проведения ванной сварки несущей арматуры;
  • отсутсвует необходимость в установке (и последующей многократной переустановке) опалубки;
  • конструкции стыков колонн и панелей перекрытий между собой не требуют установки специальной опалубки для замоноличивания стыка, чем снижена построечная трудоемкость;
  • изделия плит КУБ-2,5 складируются в штабеля до 10 штук, что позволяет успешно работать в условиях стесненной строительной площадки.

Кроме того монтаж каркаса может вестись в любую погоду, а небольшое количество рабочих на стройплощадке снижает вероятность использования неквалифицированной рабочей силы.

Экономическое обоснование

Железобетонные конструкции системы «КУБ-2,5» не только рациональны, но и оптимальны в силу заложенных в них решений. Рациональность выражается в разумно обоснованных, продуманных конструктивных решениях, предусматривющих минимальное количество строительных материалов (стали и бетона) и трудозатрат.

Экономия материалов:

  • расход железобетона в каркасе (панели перекрытия, колонны, швы замоноличивания) составляет: 0,179 м³ на 1 м² площади перекрытия;
  • расход стали в железбетонных элементах каркаса, в т.ч. арматурной и прокатной, составляет: 14,3 кг на 1 м² площади перекрытия.

Экономия трудозатрат:

  • трудозатраты построечные – 0,51 чел. час на 1 м² площади перекрытия;
  • трудозатраты заводские – 1,92 чел. час на 1 м² площади перекрытия.

Универсальная конструктивная система сборно-монолитного безригельного каркаса «КУБ-2,5» проектируется на основе разработанных и проверенных методик, что значительно сокращает сроки выполнения работ.

Изготовление и возведение каркаса ведется на основе проверенной временем эффективной организации строительного производства.

Механовооруженность труда на всех уровнях изготовления сборных железобетонных изделий и монтажа каркаса достигает 90%.

Всепогодность, универсальность и поточность возведения каркаса, а также предварительные проектные проработки позволяют достаточно точно планировать сроки строительства.

Сборный железобетон не требует электропрогрева, что экономит затраты на электроэнергию.

Скорость возведения снижает время эксплуатации башенных кранов, а следовательно и арендную плату за их эксплуатацию.

Использование сборного железобетонного каркаса системы «КУБ-2,5» реально сокращает сроки строительства и удешевляет его.