Как найти частичную сумму. Сумма ряда на практике

С помощью данного онлайн калькулятора можно находить суммы рядов, определять их сходимость, абсолютную и условную. Ряд - это последовательность чисел (либо функций - для функциональных рядов), которые связаны между собой определенным законом. Сумма членов ряда это и есть сумма ряда. Для доказательства того, что такая сумма существует (то есть она не равна бесконечности) можно использовать принципы сходимости числовых рядов - принцип Коши, принцип Доламбера и т.д. После доказательства того, что ряд сходится вычислить сумму числового ряда уже необходимо индивидуально. Для геометрической прогрессии, например, сумма вычисляется по формуле:

Найти сумму ряда онлайн

На нашем сайте вы можете вычислить сумму ряда онлайн . Всегда быстро, надежно, бесплатно. Удобный интерфейс для ввода рядов, задание начального и конечного значения элементов. Возможность находить сумму функционального ряда, использование буквенных констант. На практике студенты имеют дело с числовыми рядами довольно часто. Они широко используются в приближенных вычислениях (вычисление интегралов не имеющих аналитического решения, выполнение математических действий, решение дифференциальных уравнений и т.д.). А про функциональные ряды наподобие ряда Тейлора или ряда Фурье и говорить не приходится. С помощью нашего калькулятора определить сумму ряда теперь не проблема.

Сумма всех натуральных чисел может быть записана с использованием следующего числового ряда

Этот, на первый взгляд, совершенно противоречащий интуиции результат, тем не менее может быть строго доказан. Но прежде, чем говорить о доказательстве, нужно сделать отступление и вспомнить основные понятия.

Начнём с того, что «классической» суммой ряда называется предел частичных сумм ряда, если он существует и конечен. Подробности можно найти в википедии и соответствующей литературе. Если конечный предел не существует, то ряд называется расходящимся.

Например, частичная сумма первых k членов числового ряда 1 + 2 + 3 + 4 +… записывается следующим образом

Нетрудно понять, что эта сумма неограниченно растёт при стремлении k к бесконечности. Следовательно, исходный ряд является расходящимся и, строго говоря, не имеет суммы. Существует, однако, множество способов присвоить конечное значение расходящимся рядам.

Ряд 1+2+3+4+… далеко не единственный из расходящихся рядов. Возьмём, например, ряд Гранди

Который тоже расходится, но известно, что метод суммирования Чезаро позволяет присвоить этому ряду конечное значение 1/2. Суммирование по Чезаро заключается в оперировании не частичными суммами ряда, а их арифметическими средними. Позволив себе порассуждать в вольном стиле, можно сказать, что то частичные суммы ряда Гранди осцилируют между 0 и 1, в зависимости от того какой член ряда является последним в сумме (+1 или -1), отсюда и значение 1/2, как арифметическое среднее двух возможных значений частичных сумм.

Другим интересным примером расходящегося ряда является знакопеременный ряд 1 - 2 + 3 - 4 +... , частичные суммы которого также осцилируют. Суммирование методом Абеля позволяет присвоить данному ряду конечное значение 1/4. Отметим, что метод Абеля является, своего рода, развитием метода суммирования по Чезаро, поэтому результат 1/4 несложно осмыслить с точки зрения интуиции.

Здесь важно отметить, что методы суммирования не являются трюками, которые придумали математики, чтобы как-то совладать с расходящимися рядами. Если вы примените суммирование по Чезаро или метод Абеля к сходящемуся ряду, то ответ, который дают эти методы, равен классической сумме сходящегося ряда.

Ни суммирование по Чезаро, ни метод Абеля, однако, не позволяют работать с рядом 1 + 2 + 3 + 4 +..., т. к. средние арифметические частичных сумм, равно как и средние арифметические средних арифметических, расходятся. Кроме того, если значения 1/2 или 1/4 ещё как-то можно принять и соотнести с соответствующими рядами, то -1/12 сложно связать с рядом 1 + 2 + 3 + 4 +..., представляющим собой бесконечную последовательность положительных целых чисел.

Существует несколько способов прийти к результату -1/12. В этой заметке я лишь кратко остановлюсь на одном из них, а именно регуляризации дзета-функцией . Введём дзета-функцию

Подставляя s = -1 , получим исходный числовой ряд 1+2+3+4+…. Проделаем над этой функцией ряд несложных математических действий

Где является эта-функцией Дирихле

При значении s = -1 эта-функция становится уже знакомым нам рядом 1 - 2 + 3 - 4 + 5 -… «сумма» которого равна 1/4. Теперь мы можем легко решить уравнение


Интересно, что этот результат находит своё применение в физике. Например, в теории струн. Обратимся к стр. 22 книги Joseph Polchinski «String Theory»:

Если для кого-то теория струн не является убедительным примером в силу отсутствия доказательств множества следствий этой теории, то можно также упомянуть, что похожие методы фигурируют в квантовой теории поля при попытке рассчитать эффект Казимира .

Чтобы два раза не ходить, ещё пара интересных примеров с дзета-функцией


Для тех, кто захочет получить больше информации по теме отмечу, что написать данную заметку я решил после перевода соответствующей статьи на википедии , где в разделе «Ссылки» вы сможете найти массу дополнительного материала, в основном на английском языке.

Поскольку точное значение суммы ряда удается вычислить далеко не всегда (такие задачи были нами рассмотрены), возникает проблема приближенного вычисления суммы ряда с заданной точностью.

Напомним, что -ый остаток рядаполучается из исходного рядаотбрасыванием первыхслагаемых:

Тогда, поскольку для сходящегося ряда
,

остаток сходящегося ряда равен разности между суммой ряда и -ой частичной суммой:

,

и для достаточно больших имеем приближенное равенство

.

Из определения остатка ряда следует, что абсолютная погрешность при замене точного неизвестного значения суммы его частичной суммойравна модулю остатка ряда:

.

Таким образом, если требуется вычислить сумму ряда с заданной точностью , то нужно оставить сумму такого числаслагаемых, чтобы для отброшенного остатка ряда выполнялось неравенство:

.

Метод приближенного вычисления суммы выбирается в зависимости от вида ряда:

если ряд положительный и может быть исследован на сходимость по интегральному признаку (удовлетворяет условиям соответствующей теоремы), то для оценки суммы используем формулу

;

если это ряд Лейбница, то применяем оценку:

.

В других задачах можно использовать формулу суммы бесконечно убывающей геометрической прогрессии.

Задача №1. Сколько нужно взять слагаемых ряда
, чтобы получить его сумму с точностью 0,01.

Решение. Прежде всего отметим, что данный ряд сходится. Рассмотрим-ый остаток ряда, который и является погрешностью вычислений суммы ряда:

Оценим этот ряд с помощью бесконечно убывающей геометрической прогрессии. Для этого заменим в каждом слагаемом множитель на, при этом каждое слагаемое увеличится:

После вынесения общего множителя за скобку, в скобке остался ряд, составленный из членов бесконечно убывающей геометрической прогрессии, сумму которого мы и вычислили по формуле

.

Заданная точность будет достигнута, если будет удовлетворять условию

.

Решим неравенство, учитывая, что - целое.

При
имеем

.

При
имеем

.

В силу монотонности функции
, неравенство
будет выполняться для всех
.

Следовательно, если вместо точного значения суммы мы возьмем первые пять (или более) слагаемых, то погрешность вычислений не превысит 0,01.

Ответ:
.

Задача №2. Оценить ошибку, получаемую при замене суммы ряда
суммой первых 100 слагаемых.

Решение. Заметим, что данный ряд является сходящимся и знакопеременным. Оценивать будем ряд
, состоящий из модулей исходного ряда, что сразу увеличивает погрешность вычислений. Кроме того, нам придется перейти (используя признак сравнения) к большему, более простому сходящемуся ряду:

.

Рассмотрим ряд . Поскольку этот ряд удовлетворяет условиям теоремы – интегрального признака сходимости, то для оценки погрешности вычисления суммы используем соответствующую формулу:

.

Вычислим несобственный интеграл:

погрешность вычислений можно оценить по формуле

,

по условию
, тогда.

Ответ:
.

Задача №3. Оценить ошибку, получаемую при замене суммы ряда
суммой первых 10 слагаемых.

Решение. Подчеркнем еще раз, что задача о приближенном вычислении суммы имеет смысл только для сходящегося ряда, поэтому, прежде всего отметим, что данный ряд сходится. Поскольку исследуемый ряд является знакопеременным со сложным правилом изменения знака, то оценивать придется, как и в предыдущем примере, ряд из модулей данного ряда:

.

Используя тот факт, что
при любом значении аргумента, имеем:

.

Оценим остаток ряда:

.

Мы получили ряд, составленный из членов бесконечно убывающей геометрической прогрессии, в которой

,

его сумма равна:

,

.

Ответ:
.

Задача №4. Вычислить сумму ряда
с точностью 0,01.

Решение. Данный ряд является рядом Лейбница. Для оценки погрешности верна формула:

,

другими словами, погрешность вычислений меньше модуля первого отброшенного слагаемого. Подберем номер так, чтобы

.

При
имеем

.

При
имеем

.

Погрешность
, если в качестве значения суммы возьмем сумму первых четырех слагаемых:

Ответ:
.

Числовой ряд является некой последовательностью, которая рассматривается совместно с другой последовательностью (ее еще называют последовательностью частичных сумм). Подобные понятия применяются в математическом и комплексном анализе.

Сумму числового ряда можно легко вычислить в Excel с помощью функции РЯД.СУММ. Рассмотрим на примере, как работает данная функция, а после построим график функций. Научимся применять числовой ряд на практике при подсчете роста капитала. Но для начала немного теории.

Сумма числового ряда

Числовой ряд можно рассматривать как систему приближений к числам. Для его обозначения применяют формулу:

Здесь показана начальная последовательность чисел ряда и правило суммирования:

  • ∑ - математический знак суммы;
  • a i - общий аргумент;
  • i - переменная, правило для изменения каждого последующего аргумента;
  • ∞ - знак бесконечности, «предел», до которого проводится суммирование.

Запись обозначает: суммируются натуральные числа от 1 до «плюс бесконечности». Так как i = 1, то подсчет суммы начинается с единицы. Если бы здесь стояло другое число (например, 2, 3), то суммировать мы начинали бы с него (с 2, 3).

В соответствии с переменной i ряд можно записать развернуто:

А 1 + а 2 + а 3 + а 4 + а 5 + … (до «плюс бесконечности).

Определение суммы числового ряда дается через «частичные суммы». В математике они обозначаются Sn. Распишем наш числовой ряд в виде частичных сумм:

S 2 = а 1 + а 2

S 3 = а 1 + а 2 + а 3

S 4 = а 1 + а 2 + а 3 + а 4

Сумма числового ряда – это предел частичных сумм S n . Если предел конечен, говорят о «сходящемся» ряде. Бесконечен – о «расходящемся».

Сначала найдем сумму числового ряда:

Теперь построим в Excel таблицу значений членов ряда:

Общий первый аргумент берем из формулы: i=3.

Все следующие значения i находим по формуле: =B4+$B$1. Ставим курсор в нижний правый угол ячейки В5 и размножаем формулу.


Найдем значения. Делаем активной ячейку С4 и вводим формулу: =СУММ(2*B4+1). Копируем ячейку С4 на заданный диапазон.



Значение суммы аргументов получаем с помощью функции: =СУММ(C4:C11). Комбинация горячих клавиш ALT+«+» (плюс на клавиатуре).



Функция РЯД.СУММ в Excel

Для нахождения суммы числового ряда в Excel применяется математическая функция РЯД.СУММ. Программой используется следующая формула:

Аргументы функции:

  • х – значение переменной;
  • n – степень для первого аргумента;
  • m – шаг, на который увеличивается степень для каждого последующего члена;
  • а – коэффициенты при соответствующих степенях х.

Важные условия для работоспособности функции:

  • все аргументы обязательные (то есть все должны быть заполнены);
  • все аргументы – ЧИСЛОвые значения;
  • вектор коэффициентов имеет фиксированную длину (предел в «бесконечность» не подойдет);
  • количество «коэффициентов» = числу аргументов.

Вычисление суммы ряда в Excel

Та же функция РЯД.СУММ работает со степенными рядами (одним из вариантов функциональных рядов). В отличие от числовых, их аргументы являются функциями.

Функциональные ряды часто используются в финансово-экономической сфере. Можно сказать, это их прикладная область.

Например, положили в банк определенную сумму денег (а) на определенный период (n). Имеем ежегодную выплату х процентов. Для расчета наращенной суммы на конец первого периода используется формула:

S 1 = a (1 + x).

На конец второго и последующих периодов – вид выражений следующий:

S 2 = a (1 + x) 2 ; S 3 = a (1 + x) 2 и т.д.

Чтобы найти общую сумму:

S n = a (1 + x) + a (1 + x) 2 + a (1 + x) 3 + … + a (1 + x) n

Частичные суммы в Excel можно найти с помощью функции БС().

Исходные параметры для учебной задачи:

Используя стандартную математическую функцию, найдем накопленную сумму в конце срока сумму. Для этого в ячейке D2 используем формулу: =B2*СТЕПЕНЬ(1+B3;4)

Теперь в ячейке D3 решим эту же задачу с помощью встроенной функции Excel: =БС(B3;B1;;-B2)


Результаты одинаковые, как и должно быть.

Как заполнить аргументы функции БС():


  1. «Ставка» - процентная ставка, под которую оформлен вклад. Так как в ячейке В3 установлен процентный формат, мы в поле аргумента просто указали ссылку на эту ячейку. Если было бы указано число, то прописывали бы его сотую долю (20/100).
  2. «Кпер» - число периодов для выплат процентов. В нашем примере – 4 года.
  3. «Плт» - периодические выплаты. В нашем случае их нет. Поэтому поле аргумента не заполняем.
  4. «Пс» - «приведенная стоимость», сумма вклада. Так как мы на время расстаемся с этими деньгами, параметр указываем со знаком «-».

Таким образом, функция БС помогла найти нам сумму функционального ряда.

В Excel есть и другие встроенные функции для нахождения разных параметров. Обычно это функции для работы с инвестиционными проектами, ценными бумагами и амортизационными платежами.

Построение графика функций суммы числового ряда

Построим график функций, отражающий рост капитала. Для этого нам нужно построить график функции являющейся суммой построенного ряда. За пример, возьмем те же данные по вкладу:


В первой строке показана накопленная сумма через год. Во второй – через два. И так далее.

Сделаем еще один столбец, в котором отразим прибыль:


Как мы считали – в строке формул.

На основании полученных данных построим график функций.

Выделим 2 диапазона: A5:A9 и C5:C9. Переходим на вкладку «Вставка» - инструмент «Диаграммы». Выбираем первый график:



Сделаем задачу еще более "прикладной". В примере мы использовали сложные проценты. Они начисляются на наращенную в предыдущем периоде сумму.

Возьмем для сравнения простые проценты. Формула простых процентов в Excel: =$B$2*(1+A6*B6)


Добавим полученные значения в график «Рост капитала».


Какие именно выводы сделает инвестор – очевидно.

Математическая формула частичной суммы функционального ряда (с простыми процентами): S n = a (1 + x*n), где а – первоначальная сумма вклада, х – проценты, n – период.

Для того, чтобы вычислить сумму ряда , нужно просто сложить элементы ряда, заданное количество раз. Например:

В приведённом выше примере это удалось сделать очень просто, поскольку суммировать пришлось конечное число раз. Но что делать, если верхний предел суммирования бесконечность? Например, если нам нужно найти сумму вот такого ряда:

По аналогии с предыдущим примером, мы можем расписать эту сумму вот так:

Но что делать дальше?! На этом этапе необходимо ввести понятие частичной суммы ряда . Итак, частичной суммой ряда (обозначается S n ) называется сумма первых n слагаемых ряда. Т.е. в нашем случае:

Тогда сумму исходного ряда можно вычислить как предел частичной суммы:

Таким образом, для вычисления суммы ряда , необходимо каким-либо способом найти выражение для частичной суммы ряда (S n ). В нашем конкретном случае ряд представляет собой убывающую геометрическую прогрессию со знаменателем 1/3. Как известно сумма первых n элементов геометрической прогрессии вычисляется по формуле:

здесь b 1 - первый элемент геометрической прогрессии (в нашем случае это 1) и q - это знаменатель прогрессии (в нашем случае 1/3). Следовательно частичная сумма S n для нашего ряда равна:

Тогда сумма нашего ряда (S ) согласно определению, данному выше, равна:

Рассмотренные выше примеры являются достаточно простыми. Обычно вычислить сумму ряда гораздо сложнее и наибольшая трудность заключается именно в нахождении частичной суммы ряда. Представленный ниже онлайн калькулятор, созданный на основе системы Wolfram Alpha, позволяет вычислять сумму довольно сложных рядов. Более того, если калькулятор не смог найти сумму ряда, вероятно, что данный ряд является расходящимся (в этом случае калькулятор выводит сообщение типа "sum diverges"), т.е. данный калькулятор также косвенно помогает получить представление о сходимости рядов.

Для нахождения суммы Вашего ряда, необходимо указать переменную ряда, нижний и верхний пределы суммирования, а также выражение для n -ого слагаемого ряда (т.е. собственно выражение для самого ряда).