Практические задания учет в торговле для товароведов. Методические указания к выполнению практических работ по дисциплине «Бухгалтерский учет. на сумму выявленной недостачи

С содержится в промежутке. Таким образом, мы вновь получили лангранжеву форму дополнительного члена. 5. Заключение. В курсовой работе даны определения определенного и несобственного интеграла и его виды, рассмотрены вопросы некоторого приложения определенного интеграла. В частности, формула Валлиса, имеющая историческое значение, как первое представление числа p в виде предела легко вычисляемой...

ределенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла - метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3). Рис. 1. Криволинейная трапеция. Рис. 2. Метод трапеций. Рис. 3. Метод средних прямоугольников. По методам...


N (увеличения числа интеграций) повышается точность приближенного вычисления интегралов Задание на лабораторную работу 1) Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций: 1. f(x)=x f(x)=x2 f(x)= x3 f(x)= x4 на отрезке с шагом, 2. f(x)= f(x)= f(x)= ...



... (процедура TABL) и интеграл. 4. Заключение и выводы. Таким образом очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное. Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же...

Объем тела вращения можно вычислить по формуле :

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболысверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – подынтегральная функция в формуле возводится в квадрат:, таким образоминтеграл всегда неотрицателен , что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ :

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубическиеединицы ? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями,,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями ,,и

Решение : Изобразим на чертеже плоскую фигуру, ограниченную линиями ,,,, не забывая при этом, что уравнениезадает ось:

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел .

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через.

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через.

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ :

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (другой) в книге Занимательная геометрия . Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, изданная ещё в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями,, где.

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, фактически даны готовые пределы интегрирования. Правильно начертите графики тригонометрических функций, напомню материал урока огеометрических преобразованиях графиков : если аргумент делится на два: , то графики растягиваются по осив два раза. Желательно найти хотя бы 3-4 точкипо тригонометрическим таблицам , чтобы точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

Тема: «Вычисление объемов тел вращения с помощью определенного интеграла»

Тип урока: комбинированный.

Цель урока: научиться вычислять объемы тел вращения с помощью интегралов.

Задачи:

закрепить умение выделять криволинейные трапеции из ряда геометрических фигур и отработать навык вычислений площадей криволинейных трапеций;

познакомиться с понятием объемной фигуры;

научиться вычислять объемы тел вращения;

способствовать развитию логического мышления, грамотной математической речи, аккуратности при построении чертежей;

воспитывать интерес к предмету, к оперированию математическими понятиями и образами, воспитать волю, самостоятельность, настойчивость при достижении конечного результата.

Ход урока

I. Организационный момент.

Приветствие группы. Сообщение учащимся целей урока.

Сегодняшний урок мне бы хотелось начать с притчи. “Жил мудрец, который знал все. Один человек захотел доказать, что мудрец знает не все. Зажав в ладонях бабочку, он спросил: “Скажи, мудрец, какая бабочка у меня в руках: мертвая или живая?” А сам думает: “Скажет живая - я ее у мертвлю, скажет мертвая - выпущу”. Мудрец, подумав, ответил: “Все в твоих руках”.

Поэтому давайте сегодня плодотворно поработаем, приобретем новый багаж знаний, и полученные умения и навыки будем применять в дальнейшей жизни и в практической деятельности.“Все в Ваших руках”.

II. Повторение ранее изученного материала.

Давайте вспомним основные моменты ранее изученного материала. Для этого выполним задание“Исключите лишнее слово”.

(Студенты говорят лишнее слово.)

Правильно “Дифференциал”. Попробуйте оставшиеся слова назвать одним общим словом. (Интегральное исчисление.)

Давайте вспомним основные этапы и понятия связанные с интегральным исчислением..

Задание. Восстановите пропуски. (Студент выходит и вписывает маркером необходимые слова.)

Работа в тетрадях.

Формулу Ньютона-Лейбница вывели английский физик Исаака Ньютона (1643-1727) и немецкий философ Готфрида Лейбница (1646-1716). И это не удивительно, ведь математика - язык, на котором говорит сама природа.

Рассмотрим, как при решении практических заданий используется эта формула.

Пример 1: Вычислить площадь фигуры, ограниченной линиями

Решение: Построим на координатной плоскости графики функций . Выделим площадь фигуры, которую надо найти.

III. Изучение нового материала.

Обратите внимание на экран. Что изображено на первом рисунке? (На рисунке представлена плоская фигура.)

Что изображено на втором рисунке? Является ли эта фигура плоской? (На рисунке представлена объемная фигура.)

В космосе, на земле и в повседневной жизни мы встречаемся не только с плоскими фигурами, но и объемными, а как же вычислить объем таких тел? Например: объем планеты, кометы, метеорита, и т.д.

Об объеме задумываются и строя дома, и переливая воду из одного сосуда в другой. Правила и приёмы вычисления объёмов должны были возникать, другое дело, насколько они были точны и обоснованы.

1612 год был для жителей австрийского города Линц, где жил тогда известный астроном Иоганн Кеплер очень урожайным, особенно на виноград. Люди заготовляли винные бочки и хотели знать, как практически определить их объёмы.

Таким образом, рассмотренные работы Кеплера положили начало целому потоку исследований, увенчавшихся в последней четверти XVII в. оформлением в трудах И. Ньютона и Г.В. Лейбница дифференциального и интегрального исчисления. Математика переменных величии заняла с этого времени ведущее место в системе математических знаний.

Вот сегодня мы с вами и займемся такой практической деятельностью, следовательно,

Тема нашего урока: “Вычисление объемов тел вращения с помощью определенного интеграла”.

Определение тела вращения вы узнаете, выполнив следующее задание.

“Лабиринт”.

Задание. Найдите выход из запутанного положения и запишите определение.

IV Вычисление объемов.

При помощи определенного интеграла можно вычислить объем того или иного тела, в частности, тела вращения.

Телом вращения называется тело, полученное вращением криволинейной трапеции вокруг ее основания (рис. 1, 2)

Объем тела вращения вычисляется по одной из формул :

1. вокруг оси ОХ.

2. , если вращение криволинейной трапеции вокруг оси ОУ.

Студенты записывают основные формулы в тетрадь..

Преподаватель объясняет решение примеров на доске.

1. Найти объем тела, получаемого вращением вокруг оси ординат криволинейной трапеции, ограниченной линиями: x2 + y2 = 64, y = -5, y = 5, x = 0.

Решение.

Ответ: 1163 cm3.

2. Найти объем тела, получаемого вращением параболической трапеции, вокруг оси абсцисс y = , x = 4, y = 0.

Решение.

V . Математический тренажер.

2. Совокупность всех первообразных от данной функции называется

А) неопределенным интегралом,

Б) функцией,

В) дифференциацией.

7. Найти объем тела, получаемого вращением вокруг оси абсцисс криволинейной трапеции, ограниченной линиями:

Д/З. Закрепление нового материала

Вычислить объем тела, образованного вращением лепестка, вокруг оси абсцисс y = x2, y2 = x.

Построим графики функции. y = x2, y2 = x. График y2 = x преобразуем к виду y = .

Имеем V = V1 - V2 Вычислим объем каждой функции:

Вывод :

Определенный интеграл - это некоторый фундамент для изучения математики, которая вносит незаменимый вклад в решение задач практического содержания.

Тема “Интеграл” ярко демонстрирует связь математики с физикой, биологией, экономикой и техникой.

Развитие современной науки немыслимо без использования интеграла. В связи с этим, начинать его изучение необходимо в рамках средне специального образования!

VI . Выставление оценок. (С комментированием.)

Великий Омар Хайям - математик, поэт, философ. Он призывает быть хозяевами своей судьбы. Слушаем отрывок из его произведения:

Ты скажешь, эта жизнь - одно мгновенье.
Её цени, в ней черпай вдохновенье.
Как проведёшь её, так и пройдёт.
Не забывай: она - твоё творенье.