Лекции по курсу Подземное строительство в городах - файл Строительство подземки.doc. Руководство по комплексному освоению подземного пространства крупных городов Городские подземные сооружения

В Петербурге в рамках реновации исторического центра задумались о подземных торговых комплексах и парковках. В Киеве между тем многие торговые центры давно работают под землёй, а в Москве есть «Охотный ряд» под Манежной площадью, и самые большие парковки в центре тоже строятся под землёй. Спрятать с глаз долой можно что угодно - от парковок и коммуникаций магазинов до футбольных полей. И современные технологии позволяют делать это на разных почвах и фундаментах, не боясь обвалов и затоплений. А сэкономленное наверху место можно превратить в парки, пешеходные набережные и общественные пространства. The Village разобрал самые знаковые проекты подземного строительства в мире.

The Big Dig




В 80−90-х бостонцы постоянно жаловались в правительство Массачусетса на непростую транспортную и экологическую ситуацию, на то, что по набережной реки Чарльз и Бостонской бухты практически невозможно гулять из-за шума, пыли и безобразного вида. Здесь сходились две главные магистрали (I-90 и I-93) северо-восточных штатов, которые с ростом транспортных потоков немало вредили жизни города.

Именно поэтому Большой бостонский туннель (The Big Dig) - подземная трасса, проходящая через сердце Бостона, - стал настоящим спасением для мегаполиса. Его построили девять лет назад, в 2003-м, и это до сих пор самый дорогой проект в истории строительства США (14,6 миллиарда долларов).

Проектировщики туннеля столкнулись с двумя проблемами: над местом строительства находился железнодорожный вокзал, который нельзя было закрыть на время работы, а грунт состоял из рыхлых пород, песка и старых деревянных свай, которые когда-то были фундаментами первых бостонских домов, к началу XX века ушедших под землю. Поэтому части туннеля пришлось буквально загонять под землю при помощи домкратов, а грунт - замораживать. Две эти технологии позволили сэкономить время и деньги и не нарушить привычного образа жизни горожан. 17 января 2003 года шесть километров восьмиполосной подземной дороги были открыты.

С момента запуска туннеля две интертрассы связались под землёй, надземные развязки стали проще, был построен самый широкий (десятиполосный) мост в мире, но главное - загазованность всего Бостона упала на 12 %, а набережная стала одним из самых популярных мест отдыха горожан.

Amfora








Проект подземного города под амстердамскими каналами только разрабатывают, но это, пожалуй, одна из самых глобальных инициатив города за последние десятки лет. Чиновники хотят разгрузить исторический центр, отправив весь трафик и парковки под землю. Amfora - это многоуровневый комплекс из 60 километров подземных магистралей, метро и общественных пространств. Проектировщики предлагают построить прямо под Амстердамом торговые центры, кинозалы, спортивные комплексы, галереи и парковки и за счёт этого вернуть Амстердаму его исторический облик, который теряется с каждым годом.

Основные магистрали пройдут под каналами, которые занимают значительную часть всего центра. Здесь располагаются не только музеи и административные здания, но и множество жилых домов. Дома стоят и на воде, так что если предположить, что у каждой семьи есть одна машина, то проблема с парковкой стоит крайне остро. При этом движение по каждой стороне канала одностороннее.

Создатели проекта, в который городу придётся вложить более 3 миллионов евро, уверены: экодружественный проект сведёт загазованность в городе практически к нулю. На всех подземных трассах установят фильтры воздуха, а для комфортного пребывания под землёй уже разработаны системы кондиционирования и освещения.

Cheong Gye Cheon




История застройки Cheong Gye Cheon началась около 100 лет назад. Тогда на месте самого популярного в Сеуле парка была вырыта траншея для сточных вод. Gaecheon («открытый поток») служил всему городу каналом, через который вода утекала в ближайшие водоёмы. Своеобразная дренажная система быстро обросла трущобами, стала неприятно пахнуть и портить вид тогда ещё небольшого корейского города. После войны с Японией в Сеул хлынули люди, горожане обзавелись автомобилями, и потребовалась трасса с большой пропускной способностью. Канал засыпали, и город стал задыхаться от выхлопных газов и был обезображен ещё сильнее.

В конце 90-х приняли решение увести транспортную инфраструктуру под землю. К 2005 году, вложив в проект 218 миллионов долларов, правительство Южной Кореи отправило всё движение под землю, появилось несколько выходов с трассы по бокам, а по руслу снова пустили воду - на этот раз чистый ручей, никаких помоев. Берега облагородили, появились кафе, небольшие галереи, парки скульптур и аллеи. Место стало приятным и популярным не только среди горожан, но и среди туристов.

Helsinki"s Underground Master Plan







Хельсинки - единственный город в мире, у которого есть чёткий план развития подземных территорий, и строительство идёт системно и методично. «Подземный план» начали разрабатывать в 1972 году, а через несколько лет первые объекты уже были готовы. Благодаря каменистой почве подземное строительство может вестись практически везде, в том числе под историческими памятниками и водоёмами.

Под землю в финской столице уже ушли многие автомагистрали, торговые центры, спортивные комплексы с площадками для баскетбола, хоккейными полями и бассейнами, крупнейший в городе «Стокманн» и бизнес-центры. Между разными моллами можно передвигаться, не выходя на улицу. В одной из скал находится и водоканал Хельсинки - целый автоматизированный комплекс, где работают всего 40 человек на миллионный город. Всё это требует от инженеров-проектировщиков должной смекалки: приходится продумывать системы освещения и вентиляции, тщательно планировать дизайн всех помещений и способ их связи друг с другом. Например, на промышленных объектах на последних уровнях есть даже свои сотовые операторы. Кроме общественных зон, метро, паркингов и транспортных туннелей, под землёй уже расположился государственный архив.

Madrid Rio








Проект Madrid Rio стал знаковым в карьере мэра Мадрида Альберто Руиса Гальярдона. В 2003 году Гальярдон выиграл выборы, пообещав горожанам создать новую городскую среду, способную помочь развитию экономики всей страны. Тогда пространство Мадрида требовало полной реорганизации. Главную транспортную артерию города, которая портила и вид, и воздух, решили убрать под землю. Около 100 новых станций метро, 43 километра подземной четырёхполосной дороги, парк над ней и пять высоток, которые изменили привычный облик Мадрида, начали строить сразу же после выборов. Проект поддержало большинство горожан, хотя мэр поднял налоги специально для этого строительства.

Madrid Rio - это желание мэра выполнить собственное «правило трёх»: обеспечить горожан возможностью прогулки по реке Мансанарес, построить большой парк в центре города и сосредоточиться на восстановлении исторического ансамбля. При этом нельзя было нанести вред экономическим институциям города. Решением этих трёх задач стала подземная автодорога. «Эстетические ценности и экономика - две вещи, которые стоит развивать постоянно», - говорит Гальярдон. Подземная дорога, связывающая два конца города, уже функционирует, а на набережных вдоль реки высадили сосны и связали два берега пешеходными мостами.

Tokyo Station Area





Первую токийскую станцию метро, открытую ещё в 1914 году, японское правительство переделало под землёй, а также построило комплекс сооружений сверху. К моменту утверждения проекта территория вокруг выхода из метро была в безобразном состоянии: хаотичные парковки, грязь и отсутствие рекреационных зон. Все эти проблемы нужно было как-то решать.

Выставляя проект на конкурс перед потенциальными исполнителями, чиновники хотели, чтобы место символизировало историческое прошлое Японии и технологичное будущее. Подрядчик облагородил подземное пространство, создал многоуровневую парковку, а рядом выросли четыре высотки, связанные крытыми пешеходными галереями между собой. От станции метро можно дойти пешком до соседних Tozai, Chiyoda и Mita прямо под землёй, минуя светофоры и экономя время, или доехать на автомобиле.

Сейчас самая старая станция метро стала главным транспортным пунктом в огромном городе, а высотки, которые построили прямо над ней, превратились в сердце бизнес-жизни страны.

Редакция благодарит за помощь в создании материала бюро Ludi architects

Рост численности жителей наших городов и уровень их потребностей в условиях жилья, отдыха и жизни непрерывно растет. Город вынужден уходить в небо, развиваться периферийно и все глубже, глубже и глубже опускаться под землю.

Стратегический инновационный подход к реализации проектов освоения подземного пространства современного города является злободневным ответом на вопрос о совершенно новом понимании комфортной среды.

Введение

В процессе естественного развития любых систем - технических, производственных и градостроительных возникает барьер, преодолеть который с помощью простого количественного накопления традиционных технологических приемов просто невозможно.

Обычно в качестве классического примера приводят проблему барьера мощности в авиации, когда дальнейшее увеличение скорости и высоты полета - этих важнейших показателей технического прогресса - оказалось невозможным на самолетах с поршневым двигателем. Этот барьер был успешно преодолен переходом авиастроения на реактивную тягу.

Сегодня в области градостроительства в ходе решения социальных, транспортных и экологических проблем возник, так называемый, «барьер пространства и техники».

В настоящее время площадь земной поверхности, занятой под объекты жилищного, промышленного, хозяйственного и социально-культурного назначения, транспортные, энергетические и другие виды инженерных коммуникаций, составляет более 4% от всей поверхности суши. Площадь застройки в некоторых государствах Европы уже достигает 15, а то и 20 процентов от их общей территории.

Площади, проспекты и улицы городов заполонили «полчища» автомобилей, количество которых растет в геометрической прогрессии, требуя расширения проезжей части и числа парковочных мест.

Освоение новых территорий неминуемо ведет к сокращению лесных угодий и уменьшению площади земель, пригодных для производства сельскохозяйственной продукции.

Нехватка земли в городах, а особенно в мегаполисах, побуждает градостроителей всего мира искать дополнительные способы для развития территорий.

Мировой опыт показывает, что в градостроительстве необходимо отказаться от старой формы проектирования - плоскостной застройки городских территорий по принципу «один к одному» с независимо выполненной от них инженерной инфраструктурой.

Время и сложившиеся обстоятельства диктуют необходимость перехода от горизонтального к вертикальному зонированию городского пространства, которое способно обеспечить формирование комфортной жилой и производственной среды, на основе глубинно-пространственной организации всей системы объектов, как целостного организма, включая и жилищный фонд, и всю необходимую социально-производственную и инженерную инфраструктуру, создаваемую на подземном уровне. В современной градостроительной науке данный процесс именуется «комплексным освоением подземного городского пространства».

Подземное городское пространство - это пространство под дневной поверхностью, используемое для расширения среды обитания горожан, реализации приоритетов эколого-экономического благополучия и устойчивого развития, создания условий жизнедеятельности людей в экстремальных обстоятельствах.

Занимается изучением подземного городского пространства, формированием стратегии его инновационного развития и застройки научная дисциплина под названием «подземная урбанистика».

Цель этой статьи - познакомить читателей с актуальными проблемами инновационного развития подземного городского пространства, а также с основными теоретическими компонентами подземной урбанистики и современным опытом решения проблем, встречающимся в отечественной и зарубежной практике. В задачу автора не входило освещение вопросов метростроения, поскольку этот специфический вид транспортного строительства достаточно хорошо освещается в средствах массовой информации.

Основы понятия о подземной урбанистике

Подземная урбанистика или подземный урбанизм, подземная урбанизация (underground urbanistics ) есть область архитектуры и градостроительства, связанная с комплексным использованием подземного пространства городов и других населённых пунктов, отвечающая требованиям градостроительной эстетики, социальной гигиены, а также технико-экономической целесообразности.

Главная цель подземной урбанистики - обеспечение оптимальных условий труда, быта, отдыха и передвижения горного населения, увеличение площади открытых озеленённых пространств на поверхности, формирование здоровой, удобной и эстетически привлекательной горной среды.

На развитие подземной урбанистики сильно влияют различные факторы, такие как:

  • характеристики окружающей среды и технические характеристики (подземные воды, почвы и горных пород);
  • знание подземных особенностей и существующие представления о подземном пространстве, а также информационные базы данных ;
  • архитектурные представления и организация городского пространства;
  • легализация и административные возможности, особенности земельной собственности, регуляция землепользования , защита окружающей среды и конструктивные возможности;
  • экономические факторы (стоимость земли, издержки между надземным и подземным строительством), полный цикл использования сооружения и внешние факторы;
  • психо-социологические аспекты поведения человека в подземном пространстве.

Главной задачей является использование этих возможностей таким образом, чтобы максимально использовать преимущества окружающей среды, общества и экономики. Технически эта проблема трудноразрешима, но может быть успешно реализована, если задачи социально и политически приемлемы, экономически возможны, выгодны и легальны.

Планомерное использование подземного пространства ведётся во взаимосвязи с поверхностной планировкой и застройкой, с различными видами и типами имеющихся подземных сооружений и учётом последующих этапов развития города.

Это требует разработки специальных разделов в генеральных планах городов и в проектах детальной планировки и застройки.

Степень использования подземного пространства, техника и технология ведения работ зависят от величины города, характера и содержания исторически сложившейся и перспективной застройки, концентрации дневного населения в различных частях города, расчётного уровня автомобилизации, природно-климатических, инженерно-геологических и других условий.

В соответствии с этим в генеральном плане города и проекте детальной планировки выделяют зоны с различной степенью и очерёдностью использования подземного пространства.

Мировой опыт свидетельствует, что на современном этапе стратегия решения сложных социально-экономических и градостроительных задач осуществляется посредством формирования пространственной структуры городов за счет создания многоуровневых и многофункциональных городских образований с максимальным развитием по вертикали, с комплексным использованием подземного пространства по единому градостроительному плану, увязанному с генеральным планом развития города.

Потребность в сооружении подземных объектов самого разного назначения и задачи инновационного развития подземной инфраструктуры требуют эффективного сотрудничества ученых и специалистов, представляющих различные направления в геомеханике и геотехнике, градостроительстве и архитектуре, что неизбежно способствуют сближению и взаимообогащению специалистов различных направлений и различных научных школ.

Одновременно намечается изменение общей стратегии градостроительства: на смену централизованной схеме застройки с наивысшей плотностью (как на поверхности, так и под землей) в центре городской агломерации предлагается основную часть объема многоэтажного наземного строительства (при относительно менее плотном подземном) рассредоточить в пригороде.

При такой концепции строительства особенно актуальной становится проблема системного подхода к освоению подземного пространства на глубине 20-50 м. В настоящее время оно используется лишь под транспортные и коммунальные сети и рассредоточенные объекты разнообразного назначения относительно мелкого заложения.

Небольшой экскурс в историю зарождения подземной урбанистики

Недра земли всегда таили в себе что-то страшное, собственно, как и другие неизведанные человеком пространства. Эти страхи идут из глубин веков. Однако человечество, борясь за свое существование, было вынуждено «наступить на горло» страху подземного пространства

Известно, что первым жильем человека была пещера. Она защищала его от непогоды, оберегала от хищников, сохраняла тепло и покой. С помощью нехитрых приспособлений человек выкапывал, выцарапывал и выскребал ее вширь и вглубь. Иногда пещеры образовывали целое поселение.

С древних времен и до наших дней сохранились города под землей, самые крупные из которых находятся в турецкой области Каппадокия. Раскопки показали, что в сложной системе подземных помещений предположительно жило до 100 тысяч человек. Этот сумеречный мир со своей особой культурой основали первые христиане, скрывавшиеся от гонений римских язычников.

Один из подземных городов – Каймакли протянулся на 19 км и состоял из 8–10 уровней, где находились жилые помещения, склады, церкви, монастыри, пешеходные коридоры и кладбища. Археологи, раскопавшие город в 60-х годах, были поражены совершенством системы вентиляционных тоннелей длиной 70–80 м, шахт и труб, которая позволила не только подавать чистый воздух на такую глубину, но и контролировать его влажность и температуру.

В XVI столетии Леонардо да Винчи предложил устраивать улицы в разных уровнях для отдельного движения «сеньоров» и простого люда. И только в настоящее время этот накопленный человечеством опыт может быть оценен по достоинству и использован.

Однако масштабное городское подземное строительство началось лишь во 2-ой половине XIX века. Этому способствовало появление и развитие рельсового транспорта. С 20-30-х гг. интенсивное развитие автомобильного транспорта поставило перед архитекторами и инженерами сложную задачу улучшения пропускной способности, увеличения скорости транспорта и при этом создание безопасного и комфортного пересечения людских и транспортных потоков.

Так началось строительство подземных железных дорог (метрополитена) и автомобильных тоннелей. Транспорт начал уходить под землю, и не только для его эксплуатации.

В 40-х гг. началось крупное строительство подземных гаражей и стоянок для транспорта. С 60-х гг. осуществлялось строительство тоннелей уже для пешеходов, со временем они стали насыщаться торговыми функциями, чтобы приблизить людей к привычной для них комфортной обстановке.

Краткие сведения о современном подземном городском хозяйстве и общие принципы классификации подземных сооружений

Современное система подземного городского хозяйства включает в себя инженерно-транспортные подземные сооружения, предприятия торговли и общественного питания, зрелищные, административные и спортивные здания и сооружения, объекты коммунально-бытового обслуживания и складского хозяйства, промышленные объекты и инженерное оборудование.

К инженерно-транспортным сооружениям относятся пешеходные, автодорожные и железнодорожные тоннели , тоннели и станции метрополитена и скоростного трамвая, автостоянки и гаражи, отдельные помещения и устройства вокзалов.

Подземные предприятия торговли и общественного питания включают торговые залы и вспомогательные помещения кафе-буфетов, столовых, закусочных и ресторанов, торговые киоски, магазины, отдельные секции универсальных магазинов, торговые центры и рынки.

Подземные зрелищные, административные и спортивные здания и сооружения состоят из кинотеатров, выставочных и танцевальных залов, отдельных помещений театров и цирков, залов заседаний и конференц-залов, книгохранилищ, помещений архивов, запасников музеев, стрелковых тиров, биллиардных, плавательных бассейнов и помещений спортивных клубов.

Объекты коммунально-бытового обслуживания и складского хозяйства, расположенные под землей, это - приёмные пункты, ателье и фабрики бытового обслуживания, парикмахерские, бани и душевые, механические прачечные, продуктовые и промтоварные склады, овощехранилища, холодильники, ломбарды, резервуары для жидкостей и газов, склады горюче-смазочных и других материалов.

К объектам промышленного назначения и энергетики, размещаемым под землёй, относятся отдельные лаборатории, цеха и производства (особенно те, в которых необходима тщательная защита от пыли , шума, вибрации, перемены температур и других внешних воздействий), тепло- и гидроэлектростанции, промышленные склады и хранилища.

Практически все городское инженерное оборудование - трубопроводы (водоснабжения, канализации, теплоснабжения, газоснабжения), водостоки и ливнестоки, кабели различного назначения - это подземные сети. Все больше и больше трансформаторных подстанций, вентиляционные камер, бойлерных и котельных, газораспределительных станций, очистных и водозаборных сооружений, общих сетевых коллекторов размещаются в городском подземном пространстве.

Подземные сооружения весьма многообразны. Они могут быть классифицированы по назначению, месту расположения в городе, по объемно-планировочной схеме, глубине заложения, количеству ярусов и т.д.

Применительно к задачам подземной урбанистики наиболее часто используется классификация «по назначению». В соответствии с ней все подземные сооружения подразделяют в зависимости от времени пребывания человека на объекте:

  • дежурно-сменного пребывания до 24 часов
  • длительного пребывания до 3 - 4 ч;
  • временного пребывания до 1,5 - 2 ч;
  • кратковременного пребываниям не более 5 - 10 мин;
  • помещения и сооружения без присутствия людей.

Подземная урбанистика и практика использования подземного пространства в современных условиях.

Новаторами подземного градостроительства являются Канада, Япония и Финляндия.

В Канаде в 1997г. был построен целый подземный город - РАТН. Жителям достаточно выйти из дома и спуститься вниз - и они без препятствий доберутся на работу. Отпадает необходимость в зимней одежде и автомобиле.

В Монреале расположен самый большой «подземный город» (La ville souterraine) площадью 12 млн. кв. м. Продвигаемый мэрией как одна из местных диковин, город интересен не только размерами. Проектировщики доказали, что внизу можно размещать не только то, что хочется убрать с глаз, - трубы, склады. В La ville есть почти все нужное для жизни: торговые центры, отели, банки, музеи, университеты, метро, пересадочные узлы железной дороги, автостанция и другие объекты развлекательной и деловой инфраструктуры.

В Японии находится самый крупный подземный город страны - Яэсу. В нем располагаются 250 ресторанов, магазинов и других объектов обслуживания. По статистике Яэсу посещают каждый месяц от 8 до 10 млн. человек.

В Пекине в соответствии с программой, утвержденной городским правительством, через пять лет весь транспорт с поверхности будет убран под землю - люди смогут свободно передвигаться по улицам, отдыхать в парках, дышать свежим воздухом.

В интенсивном строительстве подземных сооружений государство, профессиональное градостроительное сообщество и девелоперы видят одно из самых перспективных направлений развития городов России.

Подземная урбанистика рассматривается в качестве ключа к решению многочисленных проблем, беспокоящих все крупные города страны, где возрастающая плотность застройки усугубляется стремительным ростом автопарка и неизбежными сбоями в работе общественного транспорта.

Своеобразным началом новой градостроительной эпохи Москвы стало сооружение в 1997 г. у стен Кремля, на месте Манежной площади, торгово-развлекательного комплекса «Охотный ряд», расположенного, главным образом, ниже уровня поверхности земли. В многоярусном подземном комплексе площадью около 70 тыс. кв. м. разместились самые разные объекты: археологический музей и офисы, торговый центр и бары-кафе-рестораны, стоянки автомобилей и гаражи. По сути дела, появился небольшой подземный город.

Сразу же началось освоение прилегающих подземных пространств под Тверской улицей и Большой Дмитровкой, а также строительство гигантского наземно-подземного комплекса «Москва-Сити» на малоосвоенном участке берега Москвы-реки в районе Красной Пресни.

Здесь фантазия архитекторов разыгралась: проектом предусмотрено возвести не только станции двух новых линий метрополитена, но и многоэтажные подземные гаражи и станции монорельсовой дороги, которая должна связать комплекс с международным аэропортом «Шереметьево». Время, правда, внесло в эти планы свои коррективы, но показательна уже сама «глубина размаха », которая со скрипом, но приобретает реальные черты.

Освоение подземного потенциала, как основной путь к устойчивому развитию города.

Не секрет, что наши российские города расширяются зачастую сумбурно, безалаберно и стремительно, без какого-либо действенного контроля.

Последствиями такого анархического разрастания является, например, увеличение автомобильных пробок и как следствие уровня загрязнения воздуха, отсутствие зеленых насаждений или затруднительное водоснабжение, что несовместимо с понятием устойчивого развития.

Освоение подземного пространства позволяет эффективно использовать такие функции, как транспортные развязки, торговые центры, театры, объекты общественного питания. Это в свою очередь должно привести к большей компактности городов, обеспечению устойчивого развития города и позволит создать благоприятную среду для жизнедеятельности в результате свободного наземного пространства для отдыха и социальной активности, зелёных полей и жилых районов.

В крупных городах с высокой плотностью населения особенно ценной представляется возможность экономии и рационального использования городской территории при проектировании подземных пространств.

Эксплуатация подземного потенциала позволит более эффективно использовать пространство, сделает систему движения мобильнее, что приведёт к снижению количества вредных выбросов и уровня шума и как следствие - к обновлению и улучшению качества жизни в мегаполисе. При этом уменьшаются протяженность подземных коммуникаций и затраты общественно-полезного времени, улучшается качество транспортного обслуживания населения. Появляется возможность экономии энергетических ресурсов за счет меньших теплопотерь подземных зданий и отсутствия резких температурных колебаний, зависящих от смены сезонов.

Свободное пространство не является единственным ресурсом подземного строительства. В целях достижения устойчивого развития следует так же оптимально использовать грунтовые воды, геоматериалы и геотермальную энергию.

Несмотря на то, что переход от поверхности к глубине осуществляется уже давно и эксплуатируется всё больше городских подземных ресурсов, происходит это, к сожалению, без реального планирования.

Управление потенциалом подземного пространства необходимо для рационального использования ресурсов и предотвращения возможных необратимых последствий хаотичной застройки.

Подземное строительство в современном городе

Выбор зон наиболее активного строительства подземных сооружений определяется градостроительными и функциональными требованиями и целесообразностью использования тех или иных участков и зон города.

Необходимо отметить, что санитарно-гигиенические и психо-физиологические требования устанавливают нормированное пребывание людей под землёй - не более 4-х часов , но ряд существенных преимуществ практически полностью компенсируют данное ограничение, а именно:

  • подземные сооружения могут проектироваться под существующими зданиями, дорогами, коммуникациями и даже руслами рек;
  • на строительство не влияют перепады рельефа, проблемы инсоляции или затененности соседних существующих объектов, воздействие внешних факторов;
  • только подземное пространство позволяет прокладывать кратчайшие пути для транспорта.

Подземные сооружениям обеспечиваются сложной инженерной системой, которая включает в себя: постоянное и надёжное искусственное освещение; вентилирование непрерывной приточно-вытяжной вентиляцией, систему звуковых оповещений; системы поддержания влажности и температуры.

На организацию архитектурно-пространственной среды подземных сооружений оказывают значительное влияние следующие факторы:

  • природные условия и характер исторически сложившейся городской среды;
  • наличие уже существующих, раннее проложенных коммуникаций и фундаментов соседних зданий, которые, как правило, будут составлять с новыми подземными объектами единую взаимосвязанную систему.

При исследовании природных факторов для определения характера участка и его природных особенностей обязательно проводятся подробные инженерно-геологические и гидрогеологические исследования, составляются инженерно-геологические карты и профили.

Сооружение подземных объектов на небольшой глубине обычно ведется открытым способом, в то время как объекты глубокого заложения строятся закрытым. При возведении подземных объектов проводят водопонижение, закрепление грунтов, гидроизоляцию объектов, применяют конструкции, рассчитанные на горное давление.

Основной упор при создании подземных сооружений Москвы делается на технико-экономические преимущества закрытой проходки и тоннельного строительства. Главное в том, что почти не требуется рыть котлованы, огораживать значительные территории, перекрывать улицы, нарушая ритм и без того напряженного транспортного движения.

Отпадает необходимость в сносе зданий, перекладке подземных коммуникаций, восстановлении дорожных покрытий и зеленых насаждений. Незримо для горожан понемногу создается еще один важный уровень города для более насыщенной и полноценной жизни в перенаселенном мегаполисе.

Экологические преимущества подземных сооружений

В пределах города подземные структуры могут размещаться практически повсеместно, минимально воздействуя на природный ландшафт и окружающую среду. Они надежно защищены от прямого воздействия климатических факторов: дождя и снега, жары и холода, ветра и солнца. Подземные сооружения отличаются повышенной виброустойчивостью и акустической изоляцией. И, наконец, достаточно хорошо защищены от воздействия сейсмовзрывных волн и проникающей радиации, что обеспечивает их неуязвимость от средств массового поражения.

Энергоэффективные аспекты подземных сооружений

Одним из наиболее экономичных решений является подземное размещение складов и холодильников. Так, при подземном расположении стоимость строительства складских зданий в 4 раза ниже, затраты при эксплуатации - в 10,6 раза меньше, чем при наземном размещении.

Стоимость строительства холодильников при подземном размещении в 3,3, а эксплуатационные расходы - в 11,6 раза ниже, чем при наземном расположении. Эти данные получены при сопоставлении подобных крупных холодильников, построенных в Канзас-Сити и Сан-Паулу (США).

При оценке затрат энергии оба холодильника были отключены, что вызвало повышение температуры в наземном холодильнике на 0,6 °С в час, а в подземном - на 0,6 °С в день. Гораздо лучшая теплоизоляция и теплоемкость среды позволяют не только экономить электроэнергию, но и подключать подземные холодильники к электросети, минуя пик потребления электроэнергии, и снижать мощность подземных холодильных установок.

Предварительный вывод

В последние десятилетия наблюдается значительный рост подземного строительства различного назначения и его многофункционального использования. Этому способствовало снижение стоимости подземного строительства. Если раньше стоимость подземных работ была в несколько раз выше чем наземных, то сегодня, в силу совершенствования техники и технологии подземных работ, их стоимость во многих случаях незначительно дороже наземных, особенно в зонах застройки.

Экономическая эффективность подземной урбанизации

Эффективность подземной урбанизации складывается из социально-экономических, инженерно-экономических и градостроительных компонентов.

При выявлении эффективности объекты, размещаемые в подземном пространстве, можно подразделить на три группы.

1. Эффективность размещения под землей транспортных коммуникаций и сооружений определяется на основе: экономии городских территорий за счет площадей для сооружения как самих объектов, так и защитных зон при них; увеличения оборачиваемости транспортных средств; сокращения длительности поездок; доставки грузов; сокращения количества остановок, эко­номии энергетических ресурсов; макси­мальной сохранности существующей наземной застройки; улучшения сани­тарно-гигиенического состояния на­земной среды.

2. Эффективность размещения под землей зрелищных сооружений, предприятий торговли и общественного питания, а также ряда объектов ком­мунально-бытового обслуживания оп­ределяется на основе: экономии тер­ритории, а также сохранения наземной застройки при размещении в сложив­шихся частях города; экономии време­ни населения за счет приближения объектов обслуживания к потреби­телю, по пути его передвижения (по­путное обслуживание); повышения размеров товарооборота и прибыли пред­приятий торговли, общественного пи­тания и культурно-зрелищных пред­приятий за счет удобного располо­жения их в зонах интенсивного скоп­ления пешеходов и пассажиров - потенциальных посетителей перечис­ленных объектов обслуживания.

3. Эффективность размещения под землей объектов складского хозяйства, промышленных зданий и сооружений, коммунальных объектов, отдельных транспортных сооружений, объектов инженерного оборудования определяется на основе: экономии городских территорий; сокращения протяженнос­ти инженерных коммуникаций за счет размещения сооружений и объектов в центре нагрузок; улучшения санитарно-гигиенического состояния городской среды, экономических преимуществ, обусловленных компактным планиро­вочным решением.

Таким образом, на основе комп­лексного использования подземного пространства города эффективность рассматривается в различных сферах:

  • социально-экономической - эко­номия времени населением, снижение транспортной усталости, улучшение санитарно-гигиенических условий проживания населения, безопасность пе­шеходов;
  • градостроительной - правильный выбор функционального и строительно­го зонирования территорий, решение транспортных проблем, увеличение площади озелененных и водных прост­ранств;
  • инженерно-экономической - уско­рение оборачиваемости транспортных средств, повышение скорости движения всех видов транспорта, экономия горючего, снижение затрат на развитие инженерного оборудования, повышение рентабельности предприятий обслужи­вания, концентрация строительства, сокращение его сроков и обеспечение комплексности застройки, экономия эксплуатационных расходов, сокра­щение размеров отчуждения сельско­хозяйственных земель.

Суммарный экономический эффект подсчитывается по каждому виду объектов с учетом экономии террито­рии, сохранения сложившейся застройки и условий эксплуа­тации подземных сооружений: эконо­мии транспортных расходов, транспортного времени, роста торговой при­были и др.

К факторам, удорожающим исполь­зование подземного пространства, от­носятся: геологические и инженерно-геологические условия, усложнение ин­женерно-конструктивных решений под­земных сооружений, стесненность при производстве работ в сложившихся массивах застройки. Подземное строительство вызывает дополнительные объемы земляных работ, усиление несущих и ограждающих конструкций, усложнение работ по гидроизоляции объектов, усложнение устройств санитарно-технического оборудования.

В то же время подземное строительство позволяет сократить затраты на фун­даменты, кровлю, отказаться от ряда конструктивных элементов наземных зданий, таких, как наружные оконные блоки, внутренние водостоки, отделка фасадов и др.

Помимо названных результатов, целесообразность подземного исполне­ния ряда сооружений обусловливается специфическими требованиями эксплуатации самих объектов. При проек­тировании объектов в подземном прост­ранстве следует учитывать благоприятные эксплуатационные фак­торы, такие как неподверженность климатическим воздействиям; относи­тельную стабильность температуры и влажности воздуха, начиная с глубины 5-8 м. Это незаменимая среда для разме­щения под землей складов продо­вольствия, винохранилищ, кладовых кино- и фотодокументов, ломбардов, а также производств, требующих тер­моконстантных условий внутренней среды (радиоэлектроника, точное ма­шиностроение и др.).

Используются и такие положи­тельные характеристики подземных сооружений, как повышенная вибро­устойчивость и акустическая изоляция по сравнению с наземными сооруже­ниями. Преимуществом подземного решения ряда производств и цехов явля­ется способность оснований полов нести повышен­ные нагрузки от тяжелого технологи­ческого оборудования.

Заключение

Рост объемов и масштабов эффективного освоения и развития подземного городского пространства наблюдается сегодня во всем мире. Он связан со всевозрастающей концентрацией населения в этих городах и непрерывным ростом численности автомобильного парка, которые порождают практически все наиболее острые современные городские проблемы - территориальные, транспортные, экологические, энергетические.

Инновационное использование методов и установок подземной урбанистики оказалось единственным способом улучшить и приспособить систему транспортных связей к росту крупнейших городов без значительных изменений традиционной планировочной структуры и застройки.

Научно определены и сформулированы принципы вертикального зонирования городского пространства.

Наиболее близкие к поверхности земли уровни (до отметки - 4 м) отводятся для пешеходов, непрерывного пассажирского транспорта, автостоянок, местных разводящих сетей. Уровни от - 4 м до - 20 м используют для трасс метрополитена и автотранспортных тоннелей мелкого заложения, многоуровневых подземных гаражей, складов, резервуаров и магистральных коллекторов. Уровни на отметке от - 15 м до - 40 м предназначают для трасс рельсового транспорта глубокого заложения, включая городские железные дороги.

В последние десятилетия, рост объемов и масштабов подземного строительства наблюдается и в наиболее значимых городах России. Строятся крупные подземные комплексы различного назначения, транспортные и коммуникационные тоннели, подземные стоянки и гаражи, производственные и складские помещения, растет протяженность линий метрополитена.

Все глубже, глубже и глубже в недра земли стремятся проникнуть и освоить их ученые, проектировщики-градостроители и мы - скромные практики строительства. В современном мире, где наука предлагает инновационные решения, где существуют уникальные технологии, и есть высокопрофессиональные специалисты - любые «барьеры пространства и техники» будут успешно преодолены!

(a. urban underground structure; н. Stadtuntergrundbauten; ф. ouvrages souterrains hurbains; и. obras subterraneas urbanas) - комплекс подземных инж. сооружений, предназначенных для удовлетворения трансп., коммунальных, бытовых и социально-культурных нужд жителей городов. Г. п. c. располагаются в глубине грунтового массива под проезжей частью улиц, вблизи зданий или непосредственно под ними, под ж.-д. и автомоб. дорогами, под реками, каналами и т.п. Kомплексное освоение подземного пространства крупных городов позволяет рационально использовать наземную терр., содействует упорядочению трансп. обслуживания населения и повышению безопасности дорожного движения, снижает уличный шум и загрязнение воздуха выхлопными газами автомобилей, способствует повышению художеств.-эстетич. качеств гор. среды. Г. п. c. можно условно объединить в ряд групп: трансп. сооружения (пассажирские и грузовые метрополитены, автотрансп. тоннели, пешеходные тоннели, подводные тоннели, скоростные автострады глубокого заложения, подземные автостоянки и гаражи, многоярусные подземные комплексы и др.), сооружения гор. коммунального x-ва и инж. коммуникации (см. Коллектор городской), объекты и предприятия культурно-бытового и торгового назначения (хранилища продуктов и товаров, холодильники, торговые центры, почтамты, выставки и др.). Cм. также Подземные сооружения.

Литература: Kомплексное освоение подземного пространства городов, K., 1973; Pуководство по составлению схем комплексного использования подземного пространства крупных и крупнейших городов, M., 1978.

B. Л. Mаковский.


Смотреть значение Городские подземные сооружения в других словарях

Временные Здания И Сооружения — Специально возводимые или приспосабливаемые на
период строительства производственные, складские, вспомогательные, жилые и общественные
здания и
сооружения,........
Экономический словарь

Городские Займы — - займы, выпускаемые органами городской власти и управления с
целью мобилизации финансовых ресурсов для строительства объектов экономической и социальной инфраструктуры,........
Экономический словарь

Городские Земли
Экономический словарь

Городские Леса — - леса, расположенные на
землях городских поселений, в пределах городской черты. В отличие от зеленых насаждений в скверах, на бульварах,
улицах и т.д., не входящих........
Экономический словарь

Дорожные Сооружения — Сооружения, являющиеся конструктивными элементами
дороги: искусственные
сооружения (мосты, путепроводы, эстакады, трубы, тоннели и др.), защитные сооружения........
Экономический словарь

Здания И Сооружения, Улучшения (improvements) — вся
недвижимость, кроме земли. Включает
здания, их внутреннее
оборудование, заборы, ограждения, систему канализации и т.д.
Экономический словарь

Здания, Сооружения И Оборудование — Активы, которые предполагается использовать на постоянной основе в деятельности предприятия/
организации, в том числе специализированные непостоянные
здания;........
Экономический словарь

Инкассируемые Документы Городские — CITY COLLECTIONSСм. ДОКУМЕНТЫ ИНКАССИРУЕМЫЕ
Экономический словарь

Нетитульные Временные Здания И Сооружения — Временные
сооружения, приспособления и устройства, предназначенные для нужд отдельного
объекта,
затраты на возведение которых учитываются в составе накладных расходов.
Экономический словарь

Период Сооружения Объекта — - указанный в
контракте
период
сооружения
объекта, начиная с даты вступления контракта в
действие и до выдачи последнего
документа о готовности........
Экономический словарь

Подземные Воды — Воды, в том числе минеральные, находящиеся в подземных водных объектах; ст. 1 Водного
кодекса Российской Федерации от 16.11.1995 № 167-ФЗ
Экономический словарь

Сооружения — -
субсчет
счета "
Основные средства", на котором учитываются следующие виды сооружений: водокачки, стадионы, бассейны,
дороги, мосты, памятники, ограждения........
Экономический словарь

Сооружения, Используемые В Процессе Транспортировки — В страховании внутренних перевозок: мосты, пирсы, причалы, погрузочно-разгрузочные средства, трубопроводы, которые являются предметом страховой защиты по страхованию внутренних перевозок.
Экономический словарь

Сооружения, Составляющие Единый Комплекс (с Главным Зданием) — В страховании имущества:
здания (
сооружения), которые являются
частью той же недвижимости, что и основное застрахованное здание по
полису имущественного........
Экономический словарь

Титульные Временные Здания И Сооружения — Временные
здания и
сооружения, возводимые за
счет сметной стоимости строительства, предназначенные для нужд строительства в целом.
Экономический словарь

Титульные Здания (сооружения) — Временные
здания и
сооружения, возводимые в
период строительства (например, временное здание для размещения работников, участвующих в строительстве).
Экономический словарь

Гидротехнические Сооружения — - плотины, здания гидроэлектростанций, водосбросные, водоспускные и водовыпускные сооружения, туннели, каналы, насосные станции, судоходные шлюзы, судоподъемники; сооружения,........
Юридический словарь

Городские Займы — - займы, выпускаемые органами городской власти и управления с целью мобилизации финансовых ресурсов для строительства объектов экономической и социальной инфраструктуры,........
Юридический словарь

Городские Земли — - земли населенных пунктов в пре- делах городской черты. В соответствии с Земельным кодексом РФ в состав Г.з. входят: земли городской, поселковой и сельской застройки;........
Юридический словарь

Городские Земли (земли Населенных Пунктов) — - земли населенных пунктов в пределах городской черты. По Земельному кодексу РФ 1991 г. в состав Г. з. входят: земли городской, поселковой и сельской застройки; общего пользования;........
Юридический словарь

Городские Судьи — - с 1889 г. судебные чиновники, заменившие в городах мировых судей.
Юридический словарь

Декларация Безопасности Гидротехнического Сооружения — - документ, в котором обосновывается безопасность гидротехнического сооружения и определяются меры по обеспечению безопасности гидротехнического сооружения с учетом........
Юридический словарь

Допустимый Уровень Риска Аварии Гидротехнического Сооружения — - значение риска аварии гидротехнического сооружения, установленное нормативными документами. Федеральный закон от 21.07.97 N 117-ФЗ, ст.3
Юридический словарь

Капитальные Здания И Сооружения Дорожного Сервиса — К капитальным зданиям и сооружениям дорожного сервиса относятся все здания и сооружения, выполненные из долговечных строительных материалов и имеющие заглубленные........
Юридический словарь

Критерии Безопасности Гидротехнического Сооружения — - предельные значения количественных и качественных показателей состояния гидротехнического сооружения и условий его эксплуатации, соответствующие допустимому уровню........
Юридический словарь

Настоящие Городские Обыватели — - согласно Жалованной грамоте городам (1785г.) первая категория городского населения, именитые горожане, обладающие домом и (или) иной недвижимостью.
Юридический словарь

Обеспечение Безопасности Гидротехнического Сооружения — - разработка и осуществление мер по предупреждению аварий гидротехнического сооружения. Федеральный закон от 21.07.97 N 117-ФЗ, ст.3
Юридический словарь

Отдельно Расположенные Гидротехнические Сооружения — - инженерные сооружения и устройства, не входящие в мелиоративные системы, обеспечивающие регулирование, подъем, подачу, распределение воды потребителям, отвод вод........
Юридический словарь

Оценка Безопасности Гидротехнического Сооружения — - определение соответствия состояния гидротехнического сооружения и квалификации работников эксплуатирующей организации нормам и правилам, утвержденным в порядке,........
Юридический словарь

Подземные Водные Объекты — - сосредоточение находящихся в гидравлической связи вод в горных породах, имеющее границы, объем и черты водного режима. К подземным водным объектам относятся:........
Юридический словарь

5. Городские подземные сооружения мелкого заложения,возводимые закрытым способомВведение

Конструкции и технологии возведения городских подземных сооружений мелкого заложения (комплексов многоцелевого назначения, подземных гаражей и автостоянок, коммуникационных тоннелей, пешеходных переходов) должны удовлетворять следующим основным требованиям:

Обеспечивать устойчивость стенок выработок в процессе проходки и эксплуатации сооружения;

Воспринимать нагрузки и воздействия от горного давления или толщи вышерасположенного грунта и наземного транспорта;

Обеспечивать водонепроницаемость обделок или их гидроизоляции;

Обеспечивать механизированную разработку грунта и возведение обделки;

Обеспечивать минимизацию нарушений поверхностных условий движения транспорта и пешеходов;

Исключать, по возможности, применение водопонижения, способного вызвать осадку поверхности грунта, наземных и подземных объектов;

Обеспечивать сохранность окружающего горного массива и близко расположенных наземных и подземных объектов;

Обеспечивать высокие скорости проходки, сокращение материалоемкости, трудоемкости и сроков строительства;

Обеспечивать соблюдение экологических, санитарно-технических и пожарных требований.

Строительство подземных сооружений мелкого заложения должно базироваться на применении индустриальных технологий с использованием современной проходческой техники, монолитных или сборных железобетонных конструкций обделок, комплексной механизации всех основных процессов и специализации отдельных видов работ, внедрении в производство работ новых строительных материалов.

При этом весь комплекс подземного сооружения должен возводиться в единых конструктивных и технологических решениях, взаимно увязанных между собой.

5.1. Горные способы работ

5.1.1. Горный способ заключается в разработке всего сечения выработки за один прием или по частям с заменой вынимаемой породы временной крепью с последующим возведением постоянной обделки из монолитного бетона или из железобетонных элементов. Плотный контакт обделки с окружающим массивом грунта обеспечивается нагнетанием за обделку цементного раствора.

5.1.2. Существующие основные способы производства работ по сооружению выработки горным способом могут быть подразделены на три группы:

К первой группе относят способы, при которых сечение выработки целиком освобождают от породы, используя варианты полностью раскрытого сечения (поточный и кольцевой варианты), сплошного забоя, ступенчатого забоя, центральной штольни, подсводного разреза, нижнего и верхнего уступов, после чего в выработке полного сечения сооружают стены и свод обделки;

Ко второй группе относят способы, когда сначала раскрывают и закрепляют калотту, в которой возводят свод, опираемый непосредственно на породу, применяя варианты проходки двухштольной, одноштольной и с опережающей калоттой);

В третьей группе способов стены обделки сооружают в штольнях, после чего раскрывают калотту, в которой возводят свод, опираемый на стены (способ опорного ядра).

5.1.3. Способы проходки выработок и средства механизации определяют в зависимости от назначения сооружения, размеров и формы поперечного сечения, инженерно-геологических условий и др. на основании результатов технико-экономического сравнения вариантов.

5.1.4. До начала основных работ по сооружению выработок при необходимости следует производить проходку передовой штольни в пределах всего сечения для обеспечения осушения выработки и отвода самотеком подземных вод, улучшения ее вентиляции, организации транспортной связи между портальными площадками и уточнения инженерно-геологических условий.

5.1.5. Способ сплошного забоя следует применять для проходки выработок высотой до 10 м с монолитной обделкой в скальных грунтах с коэффициентом крепости по Протодьяконову не менее 4. При этом временное крепление выработки при проходке в скальных (невыветрелых) грунтах с коэффициентом крепости от 12 и выше не требуется, а при проходке скальных выветрелых и сильнотрещиноватых грунтов применение временной крепи обязательно.

5.1.6. Уступный способ следует применять для проходки выработок высотой более 10 м, сооружаемых в скальных грунтах с коэффициентом крепости не менее 4 и для проходки выработок высотой менее 10 м в скальных грунтах с коэффициентом крепости от 2 до 4. Проходку выработок следует осуществлять преимущественно с нижним уступом.

5.1.7. Способ опертого свода допускается применять при сооружении выработок или их участков длиной до 300 м в дисперсных грунтах типа твердых глин и суглинков, в сцементированных крупнообломочных и других грунтах, а также в скальных грунтах с коэффициентом крепости от 1 до 4, способных воспринять давление от пят свода обделки с учетом всех нагрузок, действующих на свод. При сооружении выработок в необводненных грунтах способ опертого свода должен применяться преимущественно по одноштольной схеме. Выработки в водонасыщенных грунтах следует сооружать по двухштольной схеме.

Верхняя и нижняя штольни должны соединяться между собой грунтоспусками (фурнелями), а также наклонными стойками (бремсбергами).

При проходке тоннелей способом опертого свода раскрытие калотт надлежит вести отдельными участками (кольцами), длина которых устанавливается в зависимости от инженерно-геологических условий и не должна превышать 6,5 м.

5.1.8. Способ опорного ядра следует применять при сооружении выработок или их участков длиной до 300 м в неводонасыщенных глинистых грунтах, не способных воспринимать давление от свода обделки. В этом случае стены возводят в штольнях, после чего раскрывают калотту, в которой возводят свод, опираемый на стены.

При сооружении тоннелей сечением более 40 м 2 допускается предварительная проходка по оси выработки нижней транспортной штольни.

Боковые штольни для возведения стен при проходке выработок следует, по возможности, разрабатывать на всю длину сооружаемого участка выработки.

5.1.9. Разработку грунта в забое в зависимости от инженерно-геологических условий, размеров поперечного сечения и принятого способа проходки производят следующими способами:

При проходке сплошным забоем - буровзрывным способом с использованием буровой техники и уборкой грунта породопогрузочными машинами или экскаваторами;

При проходке уступным способом - верхнего уступа буровзрывным способом с использованием самоходных бурильных установок или горнопроходческими комбайнами, а нижнего уступа - буровзрывным способом с использованием самоходных бурильных установок и уборкой грунта экскаваторами или породопогрузочными машинами;

При проходке выработки по частям (способами опертого свода и опорного ядра) - в калотте и боковых штроссах - отбойными молотками и пневматическими лопатами; в ядре - тоннельными экскаваторами или буровзрывным способом с уборкой грунта малогабаритными породопогрузочными машинами.

5.1.10. В последнее время работы по разработке грунта в забое выработок и вывозе на поверхность земли ведутся современными автоматизированными и механизированными средствами.

Большое применение находят проходческие комбайны с механизированной установкой временных и постоянных крепей.

5.1.11. В настоящее время создаются и внедряются новые более эффективные способы разработки грунта: гидравлический, пневматический, электрофизический, химический и др.

Эти способы могут быть применены самостоятельно или в сочетании с механическими способами.

5.1.12. Выбор средств механизации следует производить из условий обеспечения поточного процесса при наименьших затратах и сроках продолжительности строительства.

5.1.13. Переборы грунта против проектного поперечного сечения выработки в скальных грунтах в случаях разработки выработок буровзрывным способом без применения метода контурного взрывания не должны превышать значений, указанных в табл. 5.1 .

В дисперсных грунтах перебор грунта против проектного сечения при разработке выработок механическими средствами не должен превышать 50 мм. В подошве выработки без обратного свода и при разработке лотка под обратный свод в дисперсных грунтах переборы грунта не допускаются.

Таблица 5.1

Способ заполнения пустот, образовавшихся от переборов грунта против проектного сечения, должен устанавливаться проектом производства работ.

5.1.14. Временное крепление выработок при проходке сплошным забоем или уступным способом в скальных грунтах трещиноватых, прочных и средней прочности надлежит выполнять с применением анкерной или набрызг-бетонной крепей или их сочетаний.

Использование арочной крепи в качестве временного крепления допускается при технико-экономическом обосновании. В этих случаях арочную и анкерно-арочную крепь допускается применять в трещиноватых скальных грунтах с коэффициентом крепости до 8, а также в зонах с тектоническими нарушениями.

5.1.15. Набрызг-бетон следует применять в качестве временной крепи при проходке в скальных трещиноватых грунтах, не проявляющих горное давление. При проходке выработок в скальных трещиноватых и выветрелых грунтах, проявляющих горное давление, следует применять набрызг-бетон, армированный металлической сеткой в сочетании с анкерной крепью.

Число слоев набрызг-бетона устанавливается в зависимости от инженерно-геологических условий и принятой проектом толщины набрызг-бетона.

5.1.16. Анкерная крепь должна применяться для временного крепления выработок на период производства работ до возведения постоянной обделки в скальных трещиноватых грунтах с коэффициентом крепости от 4 и выше. При этом применяют железобетонные, полимербетонные или металлические анкеры. Применение анкерной крепи в более слабых грунтах должно быть обосновано натурными исследованиями.

При устройстве анкерной крепи в мерзлых грунтах с использованием железобетонных анкеров должны применяться растворы, в которые введены добавки, ускоряющие схватывание, или производится электропрогрев для обеспечения твердения растворов.

5.1.17. Конструкция анкеров, их число и длина определяются проектом в зависимости от крепости и состояния грунта.

На анкерную крепь должен составляться паспорт с учетом инженерно-геологических особенностей каждого участка по длине выработки.

5.1.18. Допускаемые отклонения фактического положения анкерной крепи от проектного не должны превышать следующих значений: расстояние между анкерами - ±10 %; размер шпура - 5 мм; угол наклона шпура - 10°.

5.1.19. Горные способы работ получили совершенствование в разных странах.

1) В Японии проходку тоннелей в крепких скальных породах выполняют с забуриванием в забое системы щелей. Для этого по контуру тоннельной выработки или непосредственно на поверхности лба забоя устраивают разгружающие щели, которые ослабляют массив и облегчают разработку его взрывным способом.

Данную технологию целесообразно применять в крепких скальных породах, сохраняющих устойчивость опережающих щелей на период осуществления основных горнопроходческих операций, включенных в технологический цикл.

2) В КНР в скальных породах применяют способ центральной штольни. При этом способе горнопроходческие работы выполняют с предварительной проходкой центральной пилот-штольни, из которой забуривают веерные шпуры. Чтобы повысить степень устойчивости забоя и избежать загромождения пилот-штольни взорванной породой, необходимо создавать опережение нижней части забоя, т.е. устраивать своеобразный верхний уступ, что достигается определенной последовательностью взрывания верхних шпуров. Такая технология буровзрывных работ имеет следующие достоинства:

Возможность детального изучения геологических условий ведения работ;

Ускорение буровзрывных работ за счет ведения их на широком фронте пилот-штольни;

Возможность избирательного закрепления грунтов.

Эта технология наряду с ускорением темпов проходки позволяет проводить эвакуацию породы со снижением стоимости горнопроходческих работ.

3) В зарубежной практике с применением горного способа работ построено много подземных сооружений (подземных гаражей и автостоянок, подземных убежищ, хранилищ и др.).

Характерным примером является построенный горным способом подземный гараж тоннельного типа на 1500 автомобилей в г. Зальцбурге (Австрия).

Два тоннеля длиной по 136 м расположены параллельно в скальных породах и соединены между собой сбойками (рис. 5.1 ). Каждый тоннель сводчатого очертания пролетом 16 м и высотой 15 м рассчитан на 4-ярусное хранение автомобилей. На каждом ярусе высотой 2,2 м принята двухсторонняя прямоугольная расстановка автомобилей перпендикулярно оси проезда; размеры стояночного места 5´2,3 м, ширина проезда 6 м. По торцам тоннелей устроены спиральные рампы диаметром 18 м для проезда автомобилей с яруса на ярус.

Проходка тоннелей велась преимущественно буровзрывным способом, а частично - тоннелепроходческой машиной с рабочим органом избирательного действия типа «АМ-50» производительностью 40 м 3 /ч. Обделку тоннелей возводили из набрызг бетона.

5.1.20. Наиболее прогрессивным методом при строительстве подземных сооружений горным способом является новоавстрийский способ проходки тоннелей (НАТМ).

Технология НАТМ крепления выработки заключается в создании специальной торкрет-крепи, удерживаемой стержневой анкерной системой, сооружаемой с максимальным вовлечением в работу вмещающего массива грунта (рис. 5.2 ).

По этому способу возводят двухслойную обделку замкнутого очертания. Первичная обделка выполняется из набрызг-бетона толщиной 10 - 20 см и усиливается стальными арками или анкерами, а вторичная - из монолитного бетона или набрызг-бетона толщиной 25 - 35 см.

При строительстве тоннелей с применением НАТМ эффективными оказываются ребристые обделки из набрызг-бетона, усиливаемые решетчатыми арками. При этом вместо дорогостоящей прокатной, профильной стали используются армирующие элементы из сварных арматурных каркасов различного поперечного сечения.

Использование НАТМ позволяет:

Увеличить диапазон применения горнопроходческого способа работ в сложных инженерно-геологических условиях, в том числе в слабых грунтах, в которых затруднительно применение традиционного горного способа производства работ;

Увеличить несущую способность крепи без ее утолщения за счет установки усиливающих элементов (арок, анкеров);

Возводить подземные сооружения практически любой формы и размеров поперечного сечения;

Производить разработку породы как буровзрывным способом, так и механизированными способами с применением экскаваторов и различных тоннелепроходческих машин;

Сочетать проходку со специальными способами упрочнения грунтов осушением, закреплением инъекционными методами, замораживанием и др.;

Обеспечивать снижение стоимости строительства до 10 % по сравнению с другими способами.

Рис.5.1. Схема подземного гаража в г. Зальцбурге (Австрия)

1 - тоннель-стоянка; 2 - въездная рампа; 3 - выездная рампа; 4 - стояночные места; 5 - проезды; 6 - вспомогательные выработки; размеры в метрах


Рис. 5.2. Сравнение конструкций обделок, выполняемых горным и новоавстрийским методами

а) горный способ: 1 - деревянная затяжка; 2 - стальная арка; 3 - рошпаны; (1, 2, 3 - составляют временную крепь, расположенную вне постоянной обделки); 4 - бетонная или железобетонная постоянная обделка; 5 - обратный свод

б) новоавстрийский метод: 6 - несущий породно-анкерный свод; 7 - анкеры; 8 - наружный слой обделки из набрызг-бетона толщиной 5 - 15 см (вместе с анкерами служит временной крепью); 9 - внутренний слой постоянной обделки из набрызг-бетона или бетона толщиной 15 - 35 см

5.1.21. Основным требованием при строительстве подземных сооружений методом НАТМ является проведение мониторинга за поведением грунтового массива, как в проводимой горной выработке, так и на земной поверхности. Сбор, оценка, оптическая и письменная индикация данных наблюдений проводятся с использованием компьютерной техники и с применением высокоточного математического аппарата. Основным условием при проведении мониторинга является немедленное представление результатов измерений руководству стройки и органам технического надзора для принятия неотложных мер.

5.1.22. Способ НАТМ благодаря техническим и экономическим преимуществам в течение последних 10 - 15 лет стал стандартным в области подземного строительства.

Во многих странах западной Европы, Азии и в Америке НАТМ обогащен различными модификациями и применяется практически в любых инженерно-геологических условиях и на любой глубине. Специальные мероприятия по закреплению грунтов создают возможность применять этот метод в слабых водонасыщенных грунтах.

При использовании НАТМ стали применять проходческие комбайны, например, «Паурат Е 242» и податливую тюбинговую крепь с элементами обжатия породы типа «Мейсо».

5.1.23. Ниже приведены примеры использования НАТМ в мировой практике.

1) В Вене и Копенгагене НАТМ построены метрополитены мелкого заложения с предотвращением осадок в густонаселенных районах посредством инъекций укрепляющих растворов во вмещающие породы и с водопонижением до 10 м.

Комбайны избирательного действия фирм «Ноэль», «Альпинист Вестфалия» позволяют при новоавстрийском способе проходить тоннели высотой до 6,5 м и шириной до 7,8 м.

2) В США в последние годы технологию НАТМ в значительной степени модифицировали, сохранив основные принципы, но приспособив ее к условиям подземного строительства Северной Америки.

Для модифицированной «Североамериканской технологии» характерно более интенсивное применение для разработки породы тоннелепроходческих машин со стреловым рабочим органом, обладающих достаточно высокой производительностью и не требующих привлечения ручного труда. Кроме того, в США часто устраивают дополнительный дренаж и инъекционное закрепление слабоустойчивых грунтов.

3) Несколько видоизмененную технологию НАТМ используют в Норвегии. В трещиноватых скальных породах ее применяют в сочетании с буровзрывными работами, а в мягких породах - с механизированной разработкой. Главная особенность «Норвежского метода» - крепление выработки дисперсно армированным набрызг-бетоном, наносимым «мокрым» способом, и анкерами.

4) Одним из примеров успешной реализации технологии НАТМ для возведения подземных сооружений является строительство трехъярусной подземной автостоянки на 345 автомобилей в г. Ландесберге (Германия). В связи с тем, что место расположения стоянки окружено памятниками архитектуры и создание наземных объектов практически невозможно, был принят закрытый способ работ.

По данным инженерно-геологических изысканий с поверхности залегает 17-метровый слой плотного гравия и конгломерата, подстилаемый слоем водоупорной глины толщиной 3 - 34 м. Уровень подземных вод располагается на глубине 1 м от поверхности земли.

Стоянка выполнена в виде подземной выработки длиной 180 м, пролетом 18,9 м и высотой 16,4 м (рис. 5.3 ). Строительство автостоянки осуществлено в 6 этапов с разработкой породы экскаватором «обратная лопата» и креплением каждого элемента выработки (площадь поперечного сечения 20 - 40 м 2) слоем набрызг-бетона и решетчатыми арками с шагом 0,8 - 1 м. Набрызг-бетон наносили по «сухой» технологии. Стены основной выработки закрепляли 2-мя слоями набрызг-бетона толщиной 20 см с двумя стальными сетками. Помимо основной выработки сооружены 60-метровый проходной тоннель, 3 лифтовых шахтных ствола глубиной 30 м и аварийно-вентиляционный ствол глубиной 37 м. Строительство автостоянки сопровождалось измерениями деформаций поверхности земли, зданий, сооружений, а также проходимых подземных выработок.


Рис. 5.3. Продольный разрез (а) и поперечный разрез (б) подземной автостоянки в г. Ландесберге (Германия)

1 - стояночные места; 2 - обделка; 3 - проезд; 4 - въезд-выезд; 5 - аварийный выезд; (расстояние в метрах)

5) Горным способом возведен крупнейший подземный спорткомплекс в Норвегии в районе Холмлиа, занимающий территорию 6800 м 2 . Основные выработки сводчатого поперечного сечения, пролетами 15 - 25 м и высотой 8,5 - 13,2 м заложены на глубинах 16 - 18 м от поверхности земли.

6) В г. Чикаго построен подземный комплекс для насосной станции сточных и ливневых вод. Подземные выработки сводчатого очертания пролетом 19,2 м, высотой 29,3 м и длиной 83,7 м сооружались буровзрывным способом.

Для информации

Подземными обыкновенно называют такие сооружения, главные части которых, по эксплуатационным соображениям, расположены под землёй.

По своему назначению подземные сооружения подразделяют на:

  • транспортные (пешеходные, автотранспортные и железнодорожные тоннели, метрополитены, автостоянки и т.д.);
  • промышленные (корпуса первичного дробления руды, скиповые ямы доменных цехов, подземные части бункерных эстакад, установок грануляции шлаков, непрерывной разливки стали и проч.);
  • энергетические (подземные комплексы ГЭС, ГАЭС и АЭС, шинные и кабельные тоннели и шахты, энергетические водоводы, низовые бассейны ГАЭС и проч.);
  • хранилища (нефти, газа, вредных и радиоактивных отходов, холодильники);
  • общественные (предприятия коммунально-бытового обслуживания, торговли и общественного питания, складские, спортивные и зрелищные сооружения и т.д.);
  • инженерные (тоннели и коллекторы тепл о- , газо -, электросетей и водопровода, бензопроводы между автозаправочными станциями, очистные, перекачные и водозаборные сооружения и т.д.);
  • специального и научного назначения (ускорители заряженных частиц, тоннели для аэродинамических испытаний, подземные заводы, оборонные объекты, сооружения гражданской обороны и проч.).

Подземными могут быть отдельные помещения наземных сооружений: аэропортов, вокзалов, гаражей, торговых центров, высотных жилых и административных зданий. Кроме назначения и функциональных признаков, подземные сооружения различаются по форме и размерам поперечного сечения, планировочной схеме, месту расположения в городе, глубине заложения, методу строительства, экологичности, конструктивным особенностям и видам примененных материалов, условиям проветривания и освещения и т.п.

В соответствии с планировочной схемой различают протяжённые подземные сооружения — тоннели — горизонтальные или наклонные подземные выработки, длина которых во много раз превышает размеры поперечного сечения, и подземные сооружения ограниченной длины — камеры — горные выработки, имеющие большие размеры во всех трёх направлениях. Вертикальные горные выработки называют стволами или шахтами. Штольня — это горизонтальная или слабонаклонная горная выработка, предназначенная для обслуживания подземных работ (вывоз грунта, разведка горных пород, вентиляция, водоотлив и др.).

По расположению городские подземные сооружения могут быть как под застроенной, так и под незастроенной территориями. Подземные объекты, расположенные под застроенной территорией, могут быть:

  • изолированными от зданий и сооружений;
  • встроенными — подземные сооружения, совмещённые с подвальными этажами здания;
  • пристроенными — подземные сооружения, расположенные рядом со зданиями и присоединённые к ним подземными проез дами и переходами;
  • встроенно — пристроенными.

Подземные сооружения, расположенные на свободных от застройки участках территории города, размещают под магистральными дорогами и магистральными улицами общегородского значения, железными дорогами, скверами, парками, водными преградами, различными естественными и искусственными препятствиями.

В зависимости от глубины заложения подземные сооружения подразделяются на:

  • мелкого заложения, расположенные на глубине Н < (2 + 3)5;
  • глубокого заложения, Н > (2 + 3)5, (где 5 — наибольший размер, пролёт или высота попе речного сечения выработки).

Методы проходки подземных сооружений определяются глубиной их заложения, конструктивными особенностями, топографическими, градостроительными и инженерно-геологическими условиями района строительства. Строительство подземных сооружений может осуществляться следующими способами: открытым, опускным, горным, щитовым, механизированным и способом продавливания. В сложных инженерно-геологических условиях (слабые грунты, плывуны и проч.) при проходке могут применяться специальные методы закрепления грунтов: искусственное замораживание, цементация, химическое закрепление и проч.

По взаимодействию подземного объекта с внешней средой (по экологичности) подземные сооружения можно классифицировать следующим образом:

  • сооружения, необходимость возведения которых определяется директивно, без учёта их возможного взаимодействия с внешней средой (объекты специального назначения, гражданской обороны, некоторые транспортные тоннели, первые линии метрополитенов и проч.);
  • сооружения, при проектировании и строительстве которых экологические факторы учитываются в неявном виде (большинство транспортных тоннелей и метрополитенов, подземные ГЭС и ГАЭС, различные хранилища и т.п.);
  • сооружения, при проектировании и строительстве которых максимально учитывается взаимодействие подземного объекта и природной среды (Манежная площадь, современные линии метрополитенов);
  • объекты, возведённые с целью минимизации влияния вредных факторов на окружающую среду (подземные АЭС, хранилища агрессивных и вредных веществ, радиоактивных отходов, современные автотранспортные тоннели);
  • сооружения экологического назначения (альтернативные системы тепло- и энергоснабжения, использующие солнечную энергию, и т.п.).

Создан 03 сен 2013