Мощный воздушный солнечный коллектор своими руками. Воздушный солнечный коллектор для отопления дома. Изготовление коллектора из пивных банок

В качестве теплоносителя в системе солнечного отопления используется воздух. Солнечные коллекторы нагревают его и направляют для отопления дома или нагрева теплоаккумулятора. Воздушный тип системы солнечного отопления – самый простой и дешевый способ реализации солнечного обогрева дома.

Основные черты системы воздушного отопления:

  • Тип системы отопления – воздушная солнечная раздельная, т.е. технический воздух не смешивается с воздухом помещений
  • Воздушный подогрев пола первого этажа
  • Воздушные солнечные коллекторы, интегрированные в кровлю и южный фасад дома.
  • Водяной сезонный теплоаккумулятор большой теплоемкости.
  • Вспомогательный источник тепла – камин и инфракрасное пленочное отопление в санузлах.
  • Запас мощности – 30 % для самых холодных зимних месяцев – декабря и января.

Основные компоненты системы солнечного отопления:

  • Солнечные водушные коллекторы, интегрированные в кровлю и южный фасад
  • Водяной теплоаккумулятор
  • Система распределения воздуха

Особенностью системы солнечного воздушного отопления является то, что все ее элементы встроены в здание и являются его неотъемлемой частью. Это сводит к минимуму количество воздуховодов и теплопотери при хранении и перемещении тепловой энергии. Важным преимуществом системы отопления является то, что она раздельная, т.е. воздух в комнатах не смешивается с техническим воздухом, используемым в качестве теплоносителя и циркулирующим через солнечные коллекторы, теплоаккумулятор и подполье.

  • Движущийся воздух не переносит и не накапливает пыль, бактерии и микроорганизмы, имеющиеся в каждом доме.
  • Движение воздуха не причиняет дискомфорта находящимся в доме людям дополнительным шумом и ощущением сквозняка.
  • Устройство раздельной системы отопления не предусматривает устройство множества воздушных каналов, особенно горизонтальных, в которых со временем возможно скопление пыли.
  • Единственный воздушный горизонтальный канал, который находится под самым коньком крыши, имеет достаточный размер для обслуживания и проведения уборки.

Солнечные воздушные коллекторы

  • в зимние месяцы интенсивность солнечной радиации на вертикальную поверхность выше, чем на поверхность кровли с наклоном 38о;
  • в случае выпадения снега, когда солнечный коллектор на кровле полностью закрыт, вертикальные коллекторы остаются чистыми и нагревают воздух с первыми лучами утреннего солнца. Теплый воздух поднимается и поступает в наклонный солнечный коллектор на кровле, подогревает его, растапливает снег, и коллектор начинает работать. Любые другие плоские коллекторы или вакуумные трубки, установленные на наклонной кровле, лишены такого преимущества и начинают работу намного позже.

Наклонный солнечный коллектор для отопления представляет собой многослойную кровлю. Основным элементом, поглощающим солнечную тепловую энергию является перфорированный оцинкованный металлический лист цвета «антрацит», закрытый светопрозрачным материалом.

Сезонный теплоаккумулятор

  • воздушным потоком
  • через свои стены непосредственно в помещения

Система движения воздушных потоков спроектирована таким образом, что при зарядке теплоаккумулятора горячий воздух движется сверху вниз, а при разрядке – в обратном направлении. Это обеспечивает хорошую температурную стратификацию по всей высоте теплоаккумулятора: т.е. в верней части он всегда горячий, в нижней – прохладный. Именно в верхней части находится бак предварительного нагрева горячей воды, и из верхней части производится забор горячего воздуха для отопления. А нижняя прохладная часть обеспечивает максимальный отбор тепловой энергии у горячего воздуха, поступающего из солнечных коллекторов. Таким образом, повышается эффективность всей системы.

Система распределения тепла

Система солнечного отопления полностью автоматизирована и работает в четырех основных режимах:

  • Нагрев дома в солнечный день
  • Нагрев теплоаккумулятора
  • Отопление дома от теплоаккумулятора
  • Летний режим охлаждения

1. Нагрев дома в солнечный день.

2. Нагрев теплоаккумулятора.

Когда помещения уже достаточно прогреты, теплый воздух начинает нагревать теплоаккумулятор. Этот режим работает в основном осенью и во второй половине зимнего солнечного дня, когда в доме тепло и требуется накопление тепла на будущее. Горячий воздух, проходя через теплоаккумулятор, нагревает его. Опускаясь вниз, воздух постепенно отдает свою энергию и внизу максимально охлаждается. Из нижней части теплоаккумулятора воздух направляется опять к солнечным коллекторам. Цикл повторяется. При этом движение воздушных потоков организовано так, что избыточного нагрева бетонного пола первого этажа не происходит. Следует также отметить, что оба потока воздуха, для нагрева теплоаккумулятора и отопления первого этажа, могут протекать одновременно. Они могут также плавно менять свою скорость и перераспределять тепловой поток в зависимости от температуры помещений, теплоаккумулятора и горячего воздуха на выходе из солнечного коллектора. Если, скажем, температура поступающего воздуха 600С, то подача всего воздуха на отопление быстро приведет к перегреву жилых помещений. В тоже время неразумно терять драгоценное тепло, поэтому часть воздуха направляется в теплоаккумулятор. Контроль этого процесса полностью автоматизирован, и не требуется никакого вмешательства человека. На основании показаний температурных датчиков дифференциальный термостат плавно регулирует скорость вращения вентиляторов, направляющих теплые воздушные потоки в том или ином направлении.

3. Отопление дома от теплоаккумулятора.

Этот режим работает ночью и в пасмурные зимние дни. В ночном режиме или при затяжной облачной погоде, когда нет поступления солнечного тепла или оно незначительно, теплый воздух для отопления дома поступает из теплоаккумулятора для нагрева бетонного пола первого этажа. При этом поток воздуха в теплоаккумуляторе меняется на противоположный тому, который протекал при его зарядке теплом. Это также поддерживает хорошую температурную стратификацию по всей высоте теплоаккумулятора, сохраняя его верхнюю часть всегда горячей.

4. Режим охлаждения.

охлажденный свежий воздух из грунтового теплообменника подаётся в помещения через решетки в полу первого этажа, охлаждает первый этаж, и, нагреваясь, поднимается на второй этаж, вытесняя теплый воздух. Отток теплого воздуха происходит из верхней части каждой комнаты мансардного этажа через воздухозаборники, откуда он попадает в солнечные коллекторы. Нагреваясь в коллекторах, воздух движется вверх, создавая естественную тягу, и, в конце концов, выходит наружу через щель в верхней части кровли. Таким образом, система солнечного отопления превращается в систему солнечного охлаждения, при этом она работает полностью автоматически без электричества и каких-либо механических движущихся частей, только за счет солнечной энергии и законов физики. Как только восходит солнце и коллекторы начинают нагреваться, в них возникает тяга и воздух выходит из них, создавая в доме некоторое разряжение. При закрытых окнах и дверях, воздуху неоткуда поступать в дом, он втягивается через грунтовый теплообменник и распределяется по этажам.

холодный свежий воздух подается в верхнюю часть комнат второго этажа, а отток воздуха – из нижней части первого этажа, и далее – в солнечные коллекторы и наружу. Для подачи свежего воздуха в этой схеме уже потребуется вентилятор, т.к. мощности коллекторов для вентилирования всего дома недостаточно. Коллекторы работают только для вытяжки теплого воздуха, а для подачи холодного воздуха используется вентилятор системы отопления, работающий летом в реверсном режиме.

Следует отметить, что первый вариант проще по устройству и экономичнее в эксплуатации, но уступает второму в плане комфорта. В первом варианте при поступательном движении воздуха снизу вверх и его постепенном нагреве первый этаж всегда прохладнее второго. Во втором варианте холодный воздух при подаче сверху постепенно опускается и перемешиваться с теплым воздухом, расположенным ниже. Постепенно перемещаясь вниз, он равномерно охлаждает оба этажа, и в конце концов уходит из нижней части помещений первого этажа через специальные воздухозаборники.

Система солнечного нагрева воды

В верхней части теплоаккумулятора, где всегда максимальная температура, расположен металлический бак предварительного нагрева горячей воды. Бак устроен без изоляции для непосредственного нагрева воды горячим воздухом, поступающим из солнечных коллекторов.

Бак служит для предварительного нагрева воды до температуры 40-500С, что в большинстве случаев достаточно для бытовых нужд. В дополнение к этому после бака установлен резервный проточный электрический водонагреватель.

Солнечное водушное отопление, солнечный воздушный коллектор


воздушная система солнечного отопления, солнечные коллекторы для отопления дома, солнечный воздушный коллектор

В наше время, когда исчерпываются природные ресурсы, люди все чаще ищут альтернативные источники энергии. А что может быть лучше энергии солнца – общедоступной, неисчерпаемой и, если можно так выразиться, дармовой?

И вот совсем недавно при изучении возможного применения солнечного света учеными был изобретен воздушный коллектор – прибор, поглощающий солнечную энергию и превращающий ее в тепло, которое впоследствии передается теплоносителю. Зачастую теплоносителем выступает жидкость, но нередко используется и воздух – более того, бывают ситуации, когда воздушные приборы даже более эффективны.

Чем отличается воздушный коллектор

Вполне очевидно, что главным отличием коллектора является используемый им в работе теплоноситель – в данном случае обыкновенный атмосферный воздух. В принципе, такое устройство выполняется сегодня в двух вариантах:

  • в виде плоской перфорированной или гофрированной панели;
  • в виде системы металлических труб, хорошо проводящих тепло.

Воздух здесь подогревается при контакте с металлом, а ребра на поверхности панели при этом лишь увеличивают теплоотдачу. Всю конструкцию желательно установить на южной стене здания, а также качественно теплоизолировать. Характерно то, что циркуляция теплоносителя бывает естественной и принудительной (с использованием вентиляторов).

Воздушные коллекторы могут работать при значительно меньшей температуре, чем жидкостные. К примеру, в обычной гелиосистеме оптимальная температура для работы коллектора – 50°С и выше, в то время как воздушным хватит и 25°С. Это позитивно сказывается на эффективности описываемых нами устройств, ведь чем ниже температура, тем меньшие теплопотери.


Сферы применения

Столь низкая популярность приборов объясняется очень просто: у воздуха достаточно низкая теплопроводность. Тем не менее, гелиосистемы воздушного типа широко используются:

  • в системах рекуперации воздуха;
  • в осушительных системах;
  • в воздушном обогреве дома.

Получается, что воздушные коллекторы вряд ли можно считать полноценной заменой жидкостных, но благодаря им вполне можно сократить коммунальные расходы.

Преимущества и недостатки

У воздушных гелиосистем, как и у всех творений рук человека, есть свои сильные и слабые стороны. К преимуществам можно отнести:

  • эффективность в воздушной сушке;
  • небольшую стоимость;
  • простую конструкцию.

Но есть и недостатки:

  • воздушными коллекторами нельзя нагревать воду;
  • они весьма габаритны (ввиду незначительной теплоемкости);
  • у них скромный КПД.

Обратите внимание! Чтобы повысить эффективность воздушных гелиосистем, их устанавливают в стены (южные, как мы помним) еще при строительстве здания.

Вы можете сделать такой прибор самостоятельно, благо конструкция его, как уже отмечалось, достаточно простая. Для этого потребуются дешевые и доступные материалы (некоторые даже умудряются использовать жестяные банки).

Но помните: такие коллекторы достаточно габаритны, поэтому вполне вероятно, что придется соорудить конструкцию на всю стену.

Изготовление прибора из водосточных труб

Такой прибор уж точно лучше сделать на всю стену. Осенью и весной он поможет вам существенно сэкономить на отоплении. Материалы подбирайте, учитывая габариты будущей конструкции.

Что потребуется в работе


Технология изготовления

Для создания коллектора выполните следующие процедуры.

Первый этап. Сначала сделайте небольшой деревянный короб в виде открытого ящика. Его глубина должна быть чуть больше высоты водопроводных труб.


Второй этап. Надежно изолируйте заднюю и торцевые стенки. Поверх минеральной ваты уложите алюминиевый лист, к которому, в свою очередь, хомутами прикрепите трубы.

Обратите внимание! Для улучшения циркуляции воздуха с одной стороны короба трубы должны отступать приблизительно на 15 см от торца.

По краям трубы фиксируйте деревянной перегородкой, где предварительно проделайте крепежные отверстия в соответствующих местах.

Третий этап. Ввиду того что входное и выходное отверстия будут находиться с одной стороны конструкции, проделайте на противоположной стороне несколько деревянных перегородок для того, чтобы разделять потоки воздуха.

Четвертый этап. После монтажа окрасьте коллектор в черный цвет. Для передней панели отлично подойдет сотовый поликарбонат.


Помните: воздушный коллектор в собранном виде весит достаточно много, поэтому для монтажа вам понадобится несколько помощников. При установке используйте прочные и устойчивые опоры.

Затем подключите коллектор к вентиляции здания посредством утепленных воздуховодов. Также позаботьтесь о канальном вентиляторе, который будет нагнетать воздух в помещение.

Изготовления прибора из профнастила

Это еще более простая конструкция солнечного коллектора. Вы соорудите ее гораздо быстрее.

Первый этап. Сначала сделайте деревянный короб так же, как в предыдущем варианте. Далее по периметру тыльной стенки проложите брус (приблизительно 4х4 см), а на дно уложите минеральную вату.

Второй этап. Проделайте выходное отверстие в дне.

Третий этап. Уложите на брус профнастил и перекрасьте последний в черный цвет. Разумеется, если изначально он был другого цвета.

Четвертый этап. Сделайте перфорацию по всей площади профнастила для притока воздуха.

Пятый этап. При желании можете остеклить всю конструкцию поликарбонатом – это повысит температуру нагрева абсорбера. Но не забывайте о том, что нужно предусмотреть еще и выходное отверстие для притока воздуха извне.

Изготовление коллектора из пивных банок

Это практичная и дешевая альтернатива описанным выше моделям гелиосистем. Она характеризуется низкой себестоимостью, ведь главное – запастись достаточным количеством жестяных банок (это будет нетрудно для любителей «коки» или баночного пива).

Обратите внимание! Банки обязательно должны быть из алюминия – этот металл обладает высоким теплообменом и устойчивостью к коррозии. Поэтому при подготовке проверьте каждую банку с помощью магнита.

Технология изготовления

Первый этап. Сначала проделайте в дне каждой банки по три отверстия, каждое размером с ноготь. Сверху сделайте вырез в форме звезды и отогните края наружу – это улучшит турбулентность подогретого воздуха.

Второй этап. Далее обезжирьте банки и сложите их в трубы соответствующей длины (в зависимости от размеров стены). Дно и крышка будут почти идеально прилегать друг к другу, а незначительные зазоры между ними обработайте силиконом.

Обратите внимание! Силикон должен выдерживать перманентно высокую температуру, иначе ваша конструкция рассыплется в процессе эксплуатации.

Не смещайте банки, пока силикон полностью не высохнет. Можете использовать для этого самодельные шаблоны – две доски, сбитые под углом (своего рода желоб). Это обезопасит трубы от боковых смещений.


Третий этап. Далее приступите к сборке корпуса. Для задней стенки используйте лист обычной фанеры необходимого размера. Можете сверху и снизу короба установить специальные деревянные планки с отверстиями под трубы – так вы добьетесь более надежной фиксации.

Четвертый этап. Уложите трубы в короб и закрепите все тем же силиконовым герметиком. Потом выкрасите их черной краской – темные цвета, как известно, притягивают солнечные лучи. Между трубами проложите минеральную вату. Когда краска высохнет, закройте коллектор листом сотового поликарбоната.

В качестве заключения

В итоге хотелось бы отметить, что описанные нами конструкции гелиосистем позволяют добиться внушительного прироста температуры – зачастую в солнечный день в помещении на 25–30°С теплее, чем снаружи. Вместе с тем существенно улучшается и микроклимат в помещении, поскольку обеспечивается перманентное поступление свежего воздуха.

И еще один важный момент: такая конструкция не накапливает тепло, поэтому ночью она будет не нагревать, а охлаждать воздух в помещении. Эту проблему можно решить укрыванием коллектора после захода солнца.

Видео – Солнечный коллектор из алюминиевых банок

Согласитесь, странная весна в этом сезоне. Ярко светит солнышко и вроде бы тепло, но на улице температура 8 -11 градусов по Цельсию. И, тем не менее, я с радостью замечаю, что в моей квартире, эркер которого расположен на юг, солнечный свет, проникая сквозь стекло, приносит энергию и в комнатах тепло. Мои старания по использованию парникового эффекта оправдались.

Полтавчанин Виталий, используя тот же самый принцип, построил свой дом с купольной крышей и комнаты обогревает солнечными воздушными коллекторами. Используя энергию солнца для отопления дома, он практически обходится без природного газа, угля и дров.

Виталий, с удовольствием делится своим опытом и вот что он рассказывает: «Основным материалом для строительства двухэтажного дома стал обычный пенопласт. Такое жилье может построить каждый желающий. Помещения на втором этаже отапливается исключительно солнечно-воздушными коллекторами.

Для того, чтобы теплый воздух быстрее затягивался в комнату - я установил обычные вентиляторы типа компьютерного кулера, которые потребляют всего 1 Вт электрической энергии и работают от солнечной батареи. Как результат, мы не тратим электроэнергию, а главное тепло получаем благодаря солнечным воздушным коллекторам.

Солнечный воздушный обогреватель, изготовленный собственноручно, обошелся мне в 500 гривен. Автономное устройство, которое работает благодаря энергии солнца, не требует дополнительных затрат. Шесть солнечных воздушных коллекторов обогревают весь второй этаж купольного здания даже зимой».

Основываясь на опыте полтавского рационализатора, я решил более детально познакомиться с принципом построения солнечных воздушных коллекторов. Благо материала для этого вполне достаточно. Отмечу, что конструкции таких устройств могут быть различны, но принцип один — черная поверхность (абсорбер) поглощает солнечное тепло и отдает его воздуху.

Технология и изготовление воздушного коллектора

За основу взята конструкция, разработанная известным украинским изобретателем Юрием Дудикевичем.

Пока на коллектор светит солнце, абсорбер нагревает нагнетаемый вентиляторами холодный домашний воздух. В помещение возвращается уже нагретый воздух — благодаря такой вентиляции температура в помещении постепенно повышается.

Воздушный солнечный коллектор обычно устанавливают на крышу или на южную стену дома, но для этого необходимо предварительно сделать четыре отверстия диаметром около 10 см.

Через нижние отверстия в стене прохладный домашний воздух подается на коллектор, нагревается и возвращается обратно в помещение через верхние отверстия. На выходе коллектора устанавливаются обратные клапаны, которые блокируют движение воздуха при отключенных вентиляторах.

Согласно подсчетам Юрия, воздушный солнечный коллектор позволяет получать 1,5 кВт. ч тепловой энергии на один квадратный метр площади. К примеру, 10 коллекторов, площадью два метра каждый, могут давать 30 кВт. ч в солнечный день. В декабре, когда температура воздуха на улице достигала -6 ° С, суммарная выходная тепловая энергия коллектора в течение солнечного дня (7:00) составила 6 кВт. ч, а эффективность — не менее 50%, а в октябре коэффициент полезного действия устройства повышается до 75 %.

Теплый воздух от солнечного нагревателя лучше направить под пол, посредством плоских прямоугольных воздуховодов шириной 30 и высотой 5 сантиметров. Их изготавливают из оцинкованной жести, предварительно выполнив теплоизоляцию, они имеют большую площадь поверхности, чем круглые трубы, и поэтому лучше отдают тепло.

Для изготовления солнечного воздушного обогревателя, который может работать и зимой, понадобится деревянная рама с фанерным дном, изоляционная и рефлектирующая пленка, металлический лист, зачерненная сетка и лист прозрачного поликарбоната. К тому же нужны два вентилятора, и два обратных клапана, которые устанавливаются на выходе из коллектора.

Фанерное днище размером 1500х1500 мм нужно раскроить на две части: 1050х1500 мм и 450х1050 мм (соединяются между собой планкой сечением 20х40 мм) и вырезать четыре отверстия для движения вентилируемого воздуха.

В днище укладывается изоляционная пленка с теплоотражающими свойствами, затем снизу сверлится два отверстия диаметром 10 см для забора холодного домашнего воздуха и два отверстия сверху — для отвода горячего воздуха из коллектора. В нижние отверстия монтируются вентиляторы, с помощью которых холодный воздух будет втягиваться в коллектор, а на верхние устанавливаются обратные клапаны, которые блокируют движение воздуха при отключенных вентиляторах.

Основной элемент коллектора — абсорбер – окрашенный в черный цвет металлический лист.

К внутренней стороне абсорбера прибивается металлическая сетка, которая меняет структуру воздушного потока, создаваемого вентиляторами, и вся эта конструкция монтируется к раме коллектора.

Втянутый в коллектор холодный домашний воздух движется вдоль сетки, прогревается и становится температурно однородным.

Для коллектора используются два вентилятора Домовент ВКО-100, которые создают воздушный поток 200 м3/ч. Потребляемая мощность одного вентилятора составляет 14 Вт при дневных солнечных поступлениях на коллектор от 3 кВт. ч и выше.

Для установки воздушного коллектора на вертикальной стене (желательно с южной стороны) необходимо просверлить четыре отверстия диаметром 10 см. Для уменьшения тепловых потерь абсорбер накрывается листом прозрачного поликарбоната, который имеет защитную пленку от губительного ультрафиолетового излучения.

Теперь, надеюсь, желающие могут самостоятельно изготовить солнечный воздушный коллектор для удовлетворения собственных амбиций и на радость своей семье в создании комфортных условий проживания в доме.

Привычные источники тепловой энергии постепенно истощаются, попутно загрязняя окружающую среду при горении. Поэтому человечество много внимания уделяет возобновляемой солнечной энергии. Естественно, полноценные, автоматизированные системы на базе гелиоустановок - удовольствие не дешевое, но простой воздушный солнечный коллектор для дачи или подсобного хозяйства вполне можно соорудить самому. О том, как он работает, из чего состоит, что нужно для его сборки, поговорим далее.

Как это работает

Выйдя летним знойным днем на улицу можно на личном примере убедиться, что солнечные лучи не только освещают все вокруг, но также обладает приличным запасом тепла, нагревая окружающий воздух. В отличие от традиционных источников (газа, угля, древесины), эта энергия неограниченная - нужно просто взять да воспользоваться ею. Для этого придется задействовать элементы разных гелиоустановок, например, воздушный или вакуумный коллектор. Но, как уже оговаривалось выше, подобные серийно производимые системы имеют сложную конструкцию и достаточно высокую цену, чтобы претендовать на массовое использование.

Если анализировать их на примере систем отопления или горячего водоснабжения, то нужно признать, что панельный или вакуумный солнечный коллектор - это такой же теплообменник, как обобщенно бытовой котел (газовый, мазутный, угольный). То есть его конструкция предусматривает возможность циркуляции теплоносителя (воды, воздуха). Последний греется за счет поглощенного внешним селективным покрытием (поверхность адсорбера) видимого/инфракрасного излучения. В серийных образцах воздушного или водяного коллектора для этого используется напыление из никеля или оксида титана черного цвета. Он впитывает весь спектр солнечного света - все семь цветов радуги, каждый из которых имеет запас внутренней энергии. То есть, главной задачей солнечной установки в целом, а коллектора в частности, является максимальное поглощение лучей видимого спектра и превращение их в тепло, которое затем передается циркулирующему в системе/корпусе теплоносителю.

Интересно ! У серийных образцов солнечного коллектора степень эффективности поглощения лучей и теплопередачи достигает 95 %, а при отсутствии разбора они могут нагреть воду в системе отопления или ГВС до 200°С.

Конструкция и принцип действия воздушного аппарата довольно просты: попадая внутрь солнечного коллектора, воздух постепенно нагревается под действием солнечных лучей, становится легче и поднимается вверх. Сама циркуляция в корпусе аппарата может быть организована по естественному и принудительному пути. В первом случае горячий воздух, отдав тепло по назначению, остынет и опустится вниз, выталкивая более легкий греющийся вверх. Для принудительной циркуляции нужно задействовать вентиляционное оборудование солнечного теплообменника.

Вода или воздух

Большая стоимость солнечного коллектора для традиционных водяных систем отопления связана косвенно со свойствами используемого теплоносителя. Вода обладает высокой теплоемкостью, то есть при охлаждении отдает намного больше тепла окружающему пространству, нежели воздух. Но ее функционирование связано с рядом проблем, которые следует учитывать в процессе эксплуатации системы с солнечным коллектором:

  • Как и любая жидкость, вода практически не сжимается, но при этом расширяется с ростом температуры, а значит, нужно контролировать давление, особенно в закрытых системах;
  • Вода меняет свое агрегатное состояние, то есть зимой нужно следить, чтобы она не замерзла, разрушив корпус, трубопроводы, арматуру;
  • В ней содержится кислород, вызывающий коррозию труб, а значит, придется позаботиться о дополнительной защите.

Теплоемкость воздуха в 4 раза ниже, нежели у воды. Расчеты показывают, что при одном и том же объеме, воздушный коллектор выделяет в окружающую среду до 8 ккал тепла, по сравнению с 300 ккал у водяного. Но это также значит, что для нагрева кубометра воздуха нужно вчетверо меньше тепла. Газообразная среда обладает прекрасной подвижностью, позволяя наладить естественную циркуляцию в корпусе аппарата и системе, она не токсична, не может замерзнуть или закипеть и, что главное, воздуха много вокруг. Для его применения в системах отопления не требуется масса специальных инженерных решений.

Из этого можно заключить, что воздушный коллектор имеет более простую конструкцию, порядок эксплуатации. Он не так прихотлив в плане эксплуатации. Кроме того, его легко изготовить своими руками.

Конструктивные особенности

Естественно, существует масса технических решений, но обобщенно устройство, конструкцию, схему действия воздушного солнечного коллектора можно изобразить следующим образом:

Из иллюстрации следует, что основными его частями являются:

  • Герметичный корпус. Служит для удобства монтажа системы и размещения основных действующих компонентов солнечного воздушного коллектора;
  • Адсорбер/поглотитель. Обычно это оребренная панель, располагающаяся внутри корпуса. Главной ее задачей является поглощение солнечных лучей с последующей теплоотдачей воздуху, который циркулирует в коллекторе. Для этого внешняя сторона адсорбера должна быть черного цвета с матовой структурой (в этом случае отражающая способность будет ниже). Материалом служит обычно алюминий или медь, обладающие высокой теплопроводностью. Ребра главным образом используются в конструкции для увеличения площади теплоотдачи, обеспечения требуемого режима движения воздушного потока внутри корпуса;
  • Внешняя изоляция. Это прозрачный материал (закаленное стекло), главной задачей которого является защита адсорбера солнечного воздушного коллектора от механических повреждений и обеспечение максимальной пропускной способности для лучей;
  • Тепловая изоляция. Слой материала, расположенный между адсорбером и стенкой корпуса. Устраняет теплопотери при циркуляции потока воздуха в окружающую среду.

При установке, воздушный коллектор направляют на юг, под наклоном к горизонту. Так делают, чтобы обеспечить максимальную нагрузку поверхности поглотителя в течение дня и сезона. Влияние ориентации места установки в пространстве на степень инсоляции (продолжительность и площадь падения солнечных лучей) можно оценить на следующей иллюстрации.

Круговая диаграмма слева показывает степень/интенсивность потока солнечных лучей, а макет справа - эффективность воздушных коллекторов в зависимости от ориентации стен относительно сторон света.

Также следует учитывать, что вся конструкция в корпусе должна быть расположена максимально близко к объекту обогрева, иначе теплопотери в воздушной магистрали системы сведут на нет весь эффект.

Нагрев воздуха за счет пивных банок

Когда стоит задача спроектировать и собрать воздушный солнечный коллектор своими руками, первое, что принимается во внимание - максимальная простота итоговой конструкции. Использование подручных материалов ускорит процесс сборки и удешевит его, но не следует пренебрегать их свойствами.

Выше уже упоминалось, что лучшим вариантом для адсорбера воздушного солнечного агрегата является медь или алюминий, ввиду их высокой теплоемкости, но в розничной сети такой листовой металл имеет высокую стоимость. Заменить его в конструкции можно, как оказывается, простой банкой из-под пива или Кока-Колы - кто сказал, что адсорбер солнечного коллектора с воздушной циркуляцией должен быть плоским. Для их изготовления используют марганцево-алюминиевый сплав, а все размеры стандартизированные и одинаковые.

Интересно ! Прибегнув к простым расчетам, окажется, что если выложить на площадке и соединить между собой 64 банки (квадрат 8х8), то их площадь будет равна площади листа 1400х670 мм.

Кроме самих банок, придется изготовить корпус воздушного солнечного коллектора, для чего целесообразно использовать листовую фанеру или ДСП. Для обеспечения достаточной жесткости и прочности толщина плит солнечного теплообменника должна быть примерно 16-20 мм. Для отрезания деталей в размер нужно использовать дисковую пилу вместе с шаблоном - так поверхность реза досок получится более ровной.

Важно ! При разметке нужно оставлять припуск на отрезку и будущую обработку порядка 3-5 мм на сторону.

Между собой доски корпуса воздушного коллектора крепятся шурупами или конфирматами с обязательной прослойкой герметика. Если используется фанера, то нужно всю конструкцию обработать защитным лаком или пропиткой.

Внутренние стенки корпуса воздушного солнечного теплообменника утепляют. Проще всего для этих целей использовать плиточный пенополистирол (ППС, ЭППС), который садится на любой клеящий состав. Поверх них укладывается рулонная алюминиевая фольга, как отражающий слой. Ее стыки проклеиваются алюминизированным скотчем.

Банки крепятся между собой встык - дно вставляется в горлышко, которое предварительно подрезается ножницами по металлу и вдавливается внутрь корпуса. В дне банки проделывается несколько отверстий сверлом для организации циркуляции воздуха, а при соединении стыки обязательно обрабатываются герметиком. Чтобы собранные колонны (8 штук по 8 банок) надежно располагались в деревянном корпусе, для них следует изготовить направляющие - трубные решетки, отверстия под которые проделываются корончатыми сверлами.

Когда конструкция воздушного коллектора готова, следует провести ее окрашивание. Для этого можно использовать автомобильную матовую (это важно!) краску в баллончиках. С внешней стороны банки закрываются каленым или оргстеклом. Оно обеспечивает высокую степень прохождения лучей и защиту для воздуховодов внутри корпуса.

На задней стенке предварительно проделываются отверстия для обеспечения циркуляции воздуха. Для придания более эстетичного внешнего вида, готовую конструкцию можно облагородить, для чего использовать облицовку из вагонки или мебельных профилей.

Перед началом эксплуатации также придется продумать схему работы воздушного коллектора. Возможно, будет задействована естественная циркуляция или придется устанавливать вентилятор, чтобы гонять воздух принудительно.

Металлический лист в помощь

Еще одним простым вариантом установки для подогрева воздуха является коллектор, в котором роль поглотителя играет обычный профнастил. Это ребристый, волнообразный лист, который также, как и банки в прошлом примере помещается в деревянный корпус. Под ним также укладывается слой изоляции, например, минеральной ваты. С внешней стороны крепится прозрачное стекло. Поверхность листа также придется покрыть термостойкой, матовой и обязательно черной краской. Достоинством такого воздушного коллектора является отсутствие необходимости дополнительного оребривания. Кроме того, здесь не нужно использовать в качестве материала дорогостоящие алюминий или медь. Аналогично баночному варианту используются режимы циркуляции - естественной или принудительной.

Солнечные воздушные коллекторы (Рис.1) приобретают все большее число сторонников. Это решение, которое открывает хорошие возможности за сравнительно небольшие деньги для улучшения атмосферы в помещениях. Они действительно заслуживают того, чтобы на них обратили более пристальное внимание.



Солнечный воздушный коллектор , применительно к частному домовладению, выполняет три функции. Первая – дополнительный обогрев помещения. Вторая - вентиляция и фильтрация воздуха в помещении. Третья – осушение помещения при периодическом отоплении его в холодное время.

В работе солнечных воздушных коллекторов практически нет ограничений – электричества и газа не нужно, воздух в качестве теплоносителя не закипает и не замерзает. Такого понятия как «стагнация гелиосистемы» как в жидкостных коллекторах, просто нет.

Быстрый прогрев воздуха в помещении до нужной температуры – тоже одна из особенностей солнечных воздушных коллекторов. Несмотря на то, что воздух имеет меньшую теплопроводность в 28 раз и меньшую удельную теплоемкость в 4 раза, чем вода, он как теплоноситель подвижен, хорошо регулируется (по температуре и количеству). Воздух обеспечивает быстрое изменение температуры и более равномерное распределение тепла внутри помещений. Он безопасен в пожарном отношении. Нагретый воздух можно распределять по существующим каналам вентиляционной системы.

Принцип действия.

Солнечный воздушный коллектор (СВК) – это тепловой абсорбер, в котором в качестве рабочего тела (теплоносителя) используется воздух, а в качестве источника тепла – солнечное излучение. Холодный воздух попадает в систему каналов, где он нагревается контактируя с поверхностью абсорбера, нагретой солнечным теплом, и затем поступает в обогреваемое помещение.



Солнечные воздушные коллектора делятся на три основные группы по системе циркуляции воздуха: внутренняя циркуляция/рециркуляция (забор холодного воздуха происходит внутри отапливаемого помещения) (Рис.2б), внешняя циркуляция (забор холодного воздуха осуществляется с улицы) (Рис.2а), комбинированная циркуляция (забор холодного воздуха может осуществляться из обоих источников по очереди или одновременно) (Рис.2в).

По способу организации теплового потока в солнечном воздушном коллекторе эти устройства делятся на два типа: с естественной циркуляцией (пассивный тип) и с принудительной циркуляцией (активный тип). В первом типе, в организации движения воздуха действуют законы конвекции и гравитации, во втором типе, движение воздуха осуществляется при помощи вентилятора.

В современных солнечных воздушных коллекторах устанавливают миниатюрную фотоэлектрическую (солнечную) панель, от которой происходит питание вентилятора 12В/12Вт постоянного тока. Это снижает пожароопасность системы до нуля, по сравнению с питанием вентилятора от 220В домашней сети.

Устройство.

Солнечные воздушные коллекторы, продаваемые на рынке в России, представляют собой плоские коробчатые устройства (похожи на плоские водяные коллектора), состоящие из: алюминиевой рамы, фронтального прозрачного стекла, абсорбера (металлическая пластина окрашенная в черный или темно-синий цвет, иногда гофрированной и/или с перфорацией), коробчатых воздуховодов, утеплителя (плита из стеклянной или базальтовой ваты), пластиковой задней стенки, вентилятора, фотоэлектрической мини-панели, обратного воздушного клапана, выключателя и провода, вытяжного блока и крепежных элементов (Рис.3).


Назначение.

Первая функция солнечных воздушных коллекторов это обогрев помещения. Холодный воздух находящийся в нижней части помещения или снаружи попадает в коллектор, где нагревается и через верхний вытяжной блок возвращается в помещение (Рис.4).



Одновременно с выполнением обогрева помещения при использовании наружного воздуха воздушный солнечный коллектор выполняет вторую функцию – вентиляция помещения и приток свежего воздуха. На выходе из воздуховода коллектора в помещение устанавливается фильтр, тогда даже при рециркуляционном режиме, можно получить очистку воздуха в помещении.


Теперь рассмотрим третью функцию солнечного воздушного коллектора, за что его полюбили дачники и прочие владельцы строений, в которых проживание осуществляется не постоянно.

Солнечный воздушный коллектор не дает отсыревать помещениям, система отопления в которых работает периодически. Эту проблему не решить простым проветриванием помещений, так как влажность холодного воздуха выше, а его влагоабсорбционные свойства ниже. Достаточно взглянуть на Психометрическую диаграмму Молье и мы увидим, что когда воздушный коллектор забирает с улицы воздух с температурой -10°С и влажностью 70%, он нагревает воздух на 15°С-40°С, пусть до температуры +10°С, то влажность этого воздуха уменьшается до 15%, а влагоабсорбционные свойства подаваемого в помещение воздуха увеличиваются в 7-9 раз (Рис.5).

Соответственно СВК предохраняет дом от появления плесени, неприятного запаха, от промерзания и соответственно преждевременного разрушения отсыревших конструктивных элементов.

Очень актуальна эта функция воздушного солнечного коллектора так же для бань (Рис.6) и крытых бассейнов (Рис.7).



Необходимо упомянуть и об еще одной функции воздушных солнечных коллекторов, которая не сильно актуальна для частного домовладения в наших широтах, но всё же.

Помимо генерации тепла солнечный воздушный коллектор может выполнять барьерные и теплозащитные функции.

В этом случае коллектор занимает всю поверхность стены или крыши. Наружная поверхность коллектора и стена здания образуют так называемый фасад с двойной оболочкой. Таким путем можно «накрыть» стены, крыши и наклонные элементы зданий (Рис.8).


Наружная часть такого фасада выполняет с одной стороны барьерную функцию (защита внутренней части – т.е. собственно стены здания от намокания), с другой – это теплопоглощающая поверхность, хорошо пропускающая тепло на свою внутреннюю сторону. Ее обычно выполняют гофрированной с мелкой перфорацией.

Такой фасад с двойной оболочкой внутри разделен на вертикальные секции. Наружная поверхность фасада нагревается солнечным теплом и передает это тепло воздуху между наружной и внутренней стенками. Нагретый воздух активно поднимается вверх, где его отбирают внутрь помещений для подогрева здания. Очень часто, как и в обычных солнечных воздушных коллекторах, горячий воздух здесь используется в сочетании с системой вентиляции – непосредственно или косвенно. Восходящий поток горячего воздуха в полости фасада с двойной оболочкой одновременно подсушивает стену здания и улучшает его теплоизоляционные характеристики.

Эти свойства высоко оценили в странах с холодным и/или сырым климатом. Солнечный воздушный коллектор типа «солнечная стена» здесь не столько используется для отопления или подогрева воздуха в системе вентиляции, сколько выполняет энергосберегающие функции.

У нас в стране распространение получили индивидуальные солнечные воздушные коллектора не большой площади в применении к сезонным, периодически посещаемым и потому не постоянно отапливаемым объектам: дачи, бани, гаражи, мастерские, студии, склады.

В конце текста необходимо сказать немного о недостатках солнечного воздушного коллектора:

  • воздушный солнечный коллектор работает только при наличии солнца, эффективность его в пасмурные дни будет около нулевой.
  • при низкой температуре, даже в солнечный день, лучше переключать коллектор на режим внутренней циркуляции.
  • при установке коллектора необходимо сверлить одно-два больших отверстия в несущей стене или в крыше (в зависимости от места установки).

Рис.9 Примеры различных вариантов крепления коллекторов на стене дома.


Однако, применяя воздушный солнечный коллектор, мы можем решить следующие проблемы (Рис.9):

  • Вентиляция и фильтрация воздуха в помещениях.
  • Поддержание сухой атмосферы в помещениях, в которых не постоянно работает отопление.
  • Дополнительное отопление помещений.