Типы пород-коллекторов и нефти и газа. Классификации пород-коллекторов

Главной составной частью природного резервуара является коллектор. Коллектор – это горная порода способная вмещать в себя флюид и отдавать, при существующих методах эксплуатации месторождений.

Любая порода, которая содержит сообщающиеся между собой поры, пустоты, трещины, может стать коллектором.

Выделяют следующие группы пород коллекторов по генезису:

Обломочные или терригенные,

Биогенные или органогенные и хемогенные,

Смешанные,

Нетрадиционные коллекторы.

Терригенные или обломочные коллекторы (межзерновые, гранулярные )- это породы, образовавшиеся в результате переноса и механического накопления продуктов дезинтеграции более древних пород. Поскольку обломочный материал чаще всего транспортируется с суши в результате процессов выветривания, их еще называют терригенными. Терригенные отложения состоят преимущественно из кварца, полевых шпатов, слюд, глинистых минералов и обломков пород.

По величине обломков различают породы:

Таблица 4.1

Основная масса обломочной породы состоит из частиц, значительно более мелких, чем средние по размеру зерна. Эти мелкие частицы заполняют пустоты между более крупными зернами. Какую-то часть пустот за­полняет цемент, состоящий из глинистого или карбонатного вещества. Обломки обычносвязаны цементом. Цемент может быть сингенетическим – первичным и эпигенетическим – вторичным. Обломки обычносвязаны цементом.

Хемогенные породы-коллекторы - это осадочные образования, состоящие из минерального вещества, выпавшего на месте его формирования и не подвергшегося переносу. К ним относятся известняки, мергели, доломиты, мел, кремнистые сланцы. Пустотное пространство хемогенных коллекторов образовано трещинами и кавернами выщелачивания.

Среди карбонатных коллекторов особое место занимают биогенные или органогенные толщи, образованные жизнедеятельностью организмов: кораллов, мшанок, моллюсков, диатомовых водорослей.

Нетрадиционные коллекторы , образовавшиеся при выходе газов из вулканической лавы (туфы). Газовое месторождение в туфах и лавах риолитов палеогена в Японии.

Коллекторы метаморфических и магматических пород образовавшиеся в результате выветривания, выщелачивания, тектонической дезинтеграции - вторичных изменений пород. Месторождение Белый Тигр во Вьетнаме - коллектор образовался в результате выщелачивания и дезинтеграции гранитогнейсов.

Характеристика коллекторов дается по их основным свойствам: пористости, проницаемости, структуре порового пространства. По технологическим характеристикам коллекторы должны обладать определенной емкостью и проницаемостью.

Свойства горной породы вмещать (емкость) и пропускать (проницаемость) через себя жидкости и газы называются фильтрационно-емкостными свойствами (ФЕС ).

Емкость определяется пористостью – объемом пустот в породе. Пористость по генетической классификации может быть:

Первичной- пустоты образуются в процессе осадконакопления и породообразования (промежутки между зернами – межзерновые поры, между плоскостями наслоения, камеры в раковинах и т.д.).

И вторичной- поры образуются в результате последующих процессов: разлома и дробления породы, растворения, перекристаллизации, возникновения трещин вследствие сокращения породы (например, при доломитизации) и других процессов. Пористость измеряется в про­центах.

Суммарный объем пустот в породе называется общей (теоретической, полной, абсолютной) пористостью.

Для характеристики общей пористости используется коэффициент общей пористости - отношение суммарного объёма взаимосвязанных и изолированных пор к общему объёму горной породы

К п = V пор / V обр

где, К п - коэффициент пористости,

V пор - суммарный объем пор,

Величина общей пористости еще недостаточное свидетельство коллекторских свойств породы. Поры и пустоты могут быть взаимосообщающимися и тупиковыми (изолированными).

Открытая пористость – это объем связанных, сообщающихся между собой пор. Коэффициент открытой пористости всегда меньше коэффициента общей пористости.

К о = V о / V обр

где, К о - коэффициент открытой пористости,

V пор - объем открытых, взаимосообщающиихся пор,

V обр – объем образца породы.

Эффективная пористость – это объем пор, из которых углеводороды могут быть извлечены при разработке, еще меньшая величина.

К э = V э / V обр

где, К э - коэффициент эффективной пористости,

V пор - объем пор, через которые возможно движение флюида

V обр – объем образца породы.

Объем пор зависит от формы и размеров частиц обломочной породы, их уплотненности, отсортированности, количества, качества и типа цемента.

Тип цемента (по М.С. Швецову)

Таблица 4.2.

Тип цемента Взаимоотношение обломочных зерен и цемента
Базальный Зерна не соприкасаются друг с другом, они как бы вкраплены в цемент. Цементация прочная
Поровый Зерна соприкасаются друг с другом, все пространство между ними заполнено цементом. Прочность цементации различная
Порово-базальный Часть зерен касается друг друга, часть не касается. Прочность цементации различная
Контактовый Зерна соприкасаются друг с другом, и в местах их соприкосновения развит цемент. Цементация непрочная
Коррозионный (разъедания) Цемент заполняет все пространство между зернами и частично внедряется в них вследствие растворения зерен. Очень прочная цементация.
Сгустковый (пятнистый) Цемент развит неравномерно, пятнами. Прочность цементации различная

Важнейшим показателем, характеризующим породу как коллектор, является размер пор: их ширина или просвет.

Пористость обусловлена наличием:

Пор – пространство между отдельными зернами, слагающими горную породу. В хорошо окатанных, близких к шарообразной форме зернах, пористость не зависит от размера зерен, а определяется их укладкой и однородностью по размеру. Неглубоко залегающие, недоуплотненные коллекторы сеноманского возраста Уренгойского месторождения имеют пористость до 40%.

При низкой отсортированности мелкие зерна заполняют свободное пространство между крупными, чем уменьшают пористость.

Рис. 4.5. Примеры идеальной упаковки зерен:

кубическая (К п = 45%); ромбическая (К п = 25%)

Каверн – сравнительно крупных пустотных пространств, образовавшихся в результате действия процессов выщелачивания.

Трещин – разрывов сплошности горных пород, обусловленных литогенетическими причинами или тектонической деятельностью. Например: с возрастанием горного давления, уплотнением пород пористость уменьшается, но не безгранично. При давлении 350 - 400 кг/см 3 песчаники начинают дробиться, появляются трещины, что приводит к возникновению вторичной пористости.

Литологическая трещиноватость (уплотнение, перекристаллизация, обезвоживание, выветривание) приспосабливается к структурно-текстурным особенностям пород. Трещины ветвятся, огибают отдельные зерна, в целом их расположение хаотично, поверхность стенок неровная.

Тектоническая трещиноватость (колебательные, складкообразовательные, дизьюнктивные движения) не считается со структурно-текстурными свойствами пород.

Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке, называются коллекторами . На формирование геометрии порового пространства коллекторов и, следовательно, на их филь­трационные характеристики влияют структура и текстура пород.

Структура осадочных горных пород - размеры и форма слагающих породу минеральных зерен или условных неделимых (биоморфных или детритовых остатков, скелетов организмов, оолитов и т. п.).

Текстура - характер взаимного расположения компонентов породы и их пространственная ориентация. Емкостное пространство включает емкости двух видов: седиментационные и постседиментационные, в кото­рых все изменения протекают с разной интенсивностью, опреде­ляемой в первую очередь типом коллектора.

1 Пустотность (пористость ) – наличие в горной породе пустотного пространства. Пустотное пространство определяется размерами, конфигурацией, укладкой частиц, слагающих породу и образующих поры, наличием в порах цементирующих веществ, а также трещин и каверн.

Под пористостью понимают пустотность породы-коллектора.. Для характеристики пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры.

По размерам все поры делятся на сверхкапиллярные (> 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (<0,2 мкм).

В сверхкапиллярных порах движение воды подчинено законам гидравлики. Вода, нефть и газ в них свободно перемещаются под дей­ствием гравитационных сил. В капиллярных порах движение жидкости затруднено вследствие проявления сил молекулярного сцепления. Субкапиллярные поры характерны для глинистых пород, которые являются водо- и нефтегазоупорными. Фильтрация воды по таким породам невозможна.

Различают общую, открытую и эффективную пористость.

Общая (полная, абсолютная) пористость - это объем всех пор в породе. Соот­ветственно коэффициент общей пористости представляет собой отно­шение объема всех пор V п к объему образца породы V обр

m п = V п / V обр

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость – объем только тех пор, которые связаны, сообщаются между собой. Она характеризуется коэффициентом открытой пористости – отношением суммарного объема открытых пор V о.п. к объему образца породы V обр:

m о = V о.п. / V обр

Эффективная пористость – пористость, которая оп­ределяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры. Коэффициент эффективной пористости неф­тесодержащей породы равен отношению объема пор, через которые возможно движение нефти, воды или газа при определенных температуре и градиентах давления V э, к объему образца породы V обр:

m э = V э / V обр

Для характеристики двух- или трёхфазных систем применяется понятие динамической пористости . Коэффициент динамической пористости определяется отношением объема движущейся в породе жидкости V д к объему образца V обр:

m д = V д / V обр

Динамическая пористость всегда ниже эффективной, поскольку в эффективный объем пор включается также объем неподвижных жидкостей и газов, удерживаемых поверхностно-молекулярными силами.

2 Кавернозность - наличие в горной породе пустот непра­вильной или округлой формы размером более 1 мм. Она харак­теризуется коэффициентом кавернозности, равным отношению суммарного объема всех каверн V к к объему образца породы V обр

m к = V к / V обр

3 Гранулометрический состав горной породы харак­теризует количественное содержание в ней частиц различной ве­личины. Гра­нулометрический состав влияет на особенности эксплуата­ции нефтесодержащнх коллекторов, нефтеотдачу и различные био­химические процессы в продуктивных пластах.

По размеру частиц (мм) породы разделяются на три группы: пески или псаммиты 1-0,1; алевриты 0,1-0,01; пелиты менее 0.01. Породы относятся соответственно к псаммитам, алевритам или пелитам, если содержат по 50- 80 % частиц той или иной группы.

Для определения гранулометрического состава керн породы освобождают от нефти и воды. Для этого его помешают в экст­ратор и обрабатывают определенными растворителями. Гранулометрический состав таких пород, как пески, рыхлые песчаники и другие, легко распадающиеся на составляющие зерна, определяют ситовым анализом. В практике для гранулометриче­ского анализа применяют сита с отверстиями 1.0; 0,5; 0,25: 0,1 мм. реже - 0,04 мм. Еще более мелкие частицы разделяются гидрав­лическими методами.

4Трещиноватость - наличие в породе трещин. Тре­щины – это разрывы в горной породе (без перемещения блоков породы), характеризующиеся раскрытостью от десятков микрон до миллиметров, преимущественно тектонического происхожде­ния. Раскрытость трещин позволяет приближенно оценить величины трещинной пустотности и трещинной проницаемости.

5 Проницаемость - способность породы пропускать через себя жидкости и газы (при наличии перепада давления). Она ко­личественно характеризует фильтрационные свойства коллектора.

Для оценки абсолютной проницаемости горных пород обычно используют линейный закон фильтрации Дарси:

Согласно этому закону проницаемость k пр – константа пропор­циональности, характеризующая пористую среду, причем в иде­альном случае она не зависит от типа фильтруемой жидкости.

При движении через образец неоднородной жидкости, пред­ставленной несколькими фазами (газ-вода, нефть-вода, газ- нефть, газ-нефть-вода), величины проницаемости, определяе­мые по фильтрации каждой из фаз, будут отличаться от абсолют­ной проницаемости и одна от другой. Различают эффективную (фазовую) проницаемость для данного газа или жидкости при одновременном присутствии в порах другой фазы - жидкой или газообразной. Она изменяется в зависимости от характера фазы, температуры и давления н выражается в относительных еди­ницах.

Отношение величины эффективной проницаемости к абсолют­ной называется относительной проницаемостью породы.

6 Коэффициентом водо-, нефте-, газонасыщенности (k в, k н, k г) называется отношение объема воды, нефти или газа (V в, V н, V г),содержащихся в пустотном пространстве породы, к объему пустот (V п): k в = V в / V п; ka= V н / V п; k r = V г / V п.

Сумма коэффициентов насыщенности породы нефтью, водой и газом равна единице. Обычно коэффициенты нефте- и газонасыщенности определяют по коэффициенту водонасьаценности А в, исходя из соотношения k н(г) =1– k в.

7 Удельная поверхность г.п . – суммарная поверхность частиц или поровых каналов содержащихся в ед. объема образца.

T – суммарная поверхность частиц, либо поровых каналов в образце [м 2 ]

V – объем образца

8 Механические свойства г.п.:

1) Упругость г.п.

2) Прочность на и разрыв

3) Пластичность г.п.

Упругие свойства г.п. На состояние пласта, режим его работы, существенное влияние могут оказывать упругость коллектора и содержащиеся в нем флюиды. Если пластовое давление падает, то Н и В в пласте расширяются, а поровые каналы сужаются, в следствие того, что внешнее давление на пласт остается постоянным, а внутреннее уменьшается.

Упругую энергию г.п. принято характеризовать коэффициентами сжимаемости.

Коэффициент сжимаемости пласта, коэффициент сжимаемости пор, коэффициент сжимаемости поровой среды.

Пластические свойства г.п. – при упругих деформациях зерна породы и цементирующей материал. При увеличении давления свыше предела упругости (прочности), цементирующий материал разрушается, зерна породы смещаются относительно друг друга, плотность упаковки увеличивается до исчезновения пустот в г.п. (для пород гранулярного типа).

Под прочностью г.п. понимают их сопротивление механическому разрушению. Прочность пород на сжатие во много раз превышает прочность на разрыв.

9 Тепловые свойства г.п.

1) Удельная теплоемкость

2) Коэффициент теплопроводности

3) Коэффициент температуропроводности

4) Коэффициент линейного и объемного расширения

Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:

Тип емкости;

Литологический состав.

Величина пористости;

Величина проницаемости.

Классифакация коллекторов по типу емкости:

1 Поровый

2 Трещинновый

3 Каверновый

4 Трещинно-поровый

5 Трещинно-порово-каверновый

6 Каверно-поровый

Классификация коллекторов по литологическому составу :

Наиболее распространенные коллекторы нефти и газа - терригенные и карбонатные породы.

Терригенные породы-коллекторы представлены в основном пе­счаниками и алевролитами. Основные их показатели - грануло­метрический состав, форма и характер поверхности минеральных зерен.

Карбонатные породы-коллекторы представлены известняками и доломитами. Формирование их емкостей определяется как гене­зисом, так и особенностями постседиментацнонных преобразова­ний, в первую очередь трещиноватостью и последующим выщела­чиванием пород. Развитие трещиноватости в карбонатных поро­дах обусловлено литологическими особенностями пород.

Классификация коллекторов по величине пористости:

Классификация коллекторов по величине проницаемости:


Породы-коллекторы

Основные параметры коллекторов

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их в промышленных количествах при разработке, называются коллекторами. Большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются терригенные (песчаники, алевролиты и некоторые глинистые породы), карбонатные (известняки, доломиты), кремнистые (радиоляриты, спонголиты) породы. В редких случаях коллекторами могут служить изверженные и метаморфические породы. Характер пустотного пространства в породах определяется текстурными особенностями породы, размерами и формой минеральных зерен, составом цемента, способностью пород к трещиноватости.

Основными параметрами коллекторов является пористость и проницаемость.

Пористостью называется доля пустотного пространства в общем объеме породы. Величина пористости может быть выражена в процентах или долях единицы.

Различают общую, открытую и эффективную пористость. Общая (полная, абсолютная) пористость - это объем всех пор в породе.

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость - объем только тех пор, которые связаны, сообщаются между собой.

В нефтяной геологии наряду с понятиями общей и открытой пористости существует понятие эффективной пористости, которая определяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры.

Другим важным параметром, характеризующим фильтрационные свойства пород-коллекторов, является проницаемость - свойство пород пропускать сквозь себя жидкости и газы. Проницаемость выражается в долях квадратного метра. Обычно проницаемость, измеренная параллельно слоистости, выше проницаемости, определенной перпендикулярно к напластованию.

Различают несколько видов проницаемости: абсолютную, фазовую (эффективную) и относительную .

Абсолютная проницаемость - проницаемость, измеренная в сухой породе при пропускании через неё сухого инертного газа (азота, гелия); часто она измеряется по воздуху.

Фазовая (эффективная) проницаемость - способность породы пропускать через себя один флюид в присутствии других; для отдельных флюидов зависит от их количественного соотношения. Особенно это заметно при разработке месторождения. При откачке и уменьшении количества нефти в пласте ее фазовая проницаемость постепенно падает.

Относительная проницаемость - отношение величины эффективной проницаемости данного флюида к величине проницаемости при 100 % насыщении породы данным флюидом. Она непрерывно меняется при эксплуатации залежи, т. к. меняется соотношение флюидов. Относительная проницаемость породы для любого флюида возрастает с увеличением ее насыщенности этим флюидом.

Пластовые флюиды - нефть, газ, вода - аккумулируются в пустотном пространстве породы-коллектора, представленном порами, кавернами и трещинами. По преобладающему виду пустот породы-коллекторы делятся на поровые, кавернозные, трещинные и биопустотные .

Поровыми (гранулярными) являются в основном песчаноалевритовые породы и некоторые разности карбонатных - оолитовые, обломочные известняки. Пустоты коллекторов представлены порами, размеры их не превышают 1 мм (рис. 89).

Рис. 89. Поровые коннекторы

Трещинными коллекторами могут быть осадочные породы, изверженные и метаморфические. Трещины определяют главным образом проницаемость этих образований. В качестве трещинных коллекторов среди осадочных пород чаще всего выступают карбонатные, но бывают и песчаноалевритовые и даже глинистые, которые ранее могли являться и нефтепроизводящими (рис. 90).

Рис. 90. Трещинные коллекторы

Кавернозные коллекторы чаще всего связаны с зонами выщелачивания с образованием пустот (каверн) в карбонатных толщах. Размеры каверн превышают 1 мм. Пустотное пространство образуется также при метасомагическом замещении кальцита доломитом (рис. 91).

Рис. 91. Кавернозные коллекторы

Биопустотные коллекторы связаны с органогенными карбонатными и кремнистыми породами, пустоты носят внутрискелетный и межскелетный характер (рис. 92).

По времени формирования все виды пустот могут быть первичные, образовавшиеся вместе с породой, и вторичные, образовавшиеся уже в готовой породе. Поры чаще бывают первичные, а каверны и трещины - вторичные. В карбонатных породах могут существовать еще реликтовые пустоты, например, пустоты раковин.

Рис. 92. Биопустотные коллекторы

Влияние постседиментационных процессов на изменение пустотного пространства

После завершения седиментации пористость образовавшегося песчаного осадка называется гипергенно-седиментационной. Последующие процессы диагенеза и катагенеза (уплотнение, цементация, регенерация) способствуют уменьшению, сокращению свободного порового пространства (рис. 93).

Рис. 93. Сокращение норового пространства в песчаниках за счет вторичных процессов. Шлифы

Наряду с уменьшением пористости пород на глубине иногда развиваются процессы, которые способствуют увеличению порового пространства: растворение, выщелачивание, перекристаллизация, образование трещин, метасоматоз (рис. 94).

Рис. 94. Процессы, способствующие формированию вторичной пористости в породах-коллекторах. Шлифы

Породы-флюидоупоры

Сохранение скоплений нефти и газа в породах-коллекторах невозможно, если они не будут перекрыты непроницаемыми для флюидов (нефти, газа и воды) породами - флюидоупорами (покрышками, экранами). Лучшими покрышками считаются соленосные толщи, но наиболее распространены в этом качестве глины.

Экранирующие свойства глин зависят от их состава, мощности и выдержанности, песчанистости или алевритистости, вторичных изменений, трещиноватости. Большое значение также имеют находящиеся в глинах вода и органическое вещество.

Важнейшим качеством глин для формирования экранирующих свойств является пластичность - важнейшее качество глин, обеспечивающее способность к перестройке структуры под влиянием приложенной нагрузки без нарушения сплошности сложенного глинами пласта. Она исключает механическое разрушение при прорыве нефти и газа под избыточным давлением (до определенного предела). Однако при росте давления в течение достаточно продолжительного времени предел пластичности может быть пройден, глина становится ломкой и хрупкой и теряет свои экранирующие свойства.

Соли, гипсы и ангидриты являются покрышками, хотя сквозь их толщу проходит медленный, но постоянный поток углеводорода. Более пластичные покрышки каменной соли являются лучшими по качеству, чем ангидриты и гипсы. С увеличением глубины возрастает пластичность солей и сульфатных пород, в связи с чем улучшаются и их экранирующие свойства.

Покрышки, относящиеся к разряду плотностных, образуются обычно толщами однородных монолитных, лишенных трещин тонкокристаллических известняков , реже доломитов , мергелей , аргиллитов. Карбонатные покрышки характерны для нефтяных залежей платформенных областей, для условий пологого залегания пород.

По площади распространения различаются региональные, зональные и локальные покрышки. Региональные покрышки имеют широкое площадное распространение, характеризуются значительной мощностью и литологической выдержанностью. Они обычно выдерживаются в пределах отдельных нефтегазоносных областей. Зональные покрышки бывают выдержаны как минимум в пределах одной зоны нефтегазонакопления. Локальные покрышки имеют ограниченное распространение, часто занимают площадь одного или нескольких месторождений. Они обусловливают сохранность отдельных залежей и характер их распределения в разрезе месторождения.

Карбонатные покрышки часто ассоциируются с кабонатными же коллекторами, границы между ними имеют весьма сложную поверхность. Для

карбонатных покрышек характерно быстрое приобретение ими изолирующей способности (в связи с быстрой литификацией и кристаллизацией карбонатного осадка). Для плотностных покрышек большое значение имеет мощность, увеличивающая в целом крепость пород.

Плотностные покрышки теряют свою герметичность на больших глубинах за счет появления трещин механического образования.

министерство образования и науки российской федерации

Федеральное Государственное Бюджетное образовательное учреждение

высшего профессионального образования

ТюменскИЙ государственнЫЙ нефтегазовЫЙ университет

Институт геологии и нефтегазодобычи

Кафедра "Разработки и эксплуатации нефтяных и газовых месторождений"

Курсовая работа

На тему "Типы пород-коллекторов и нефти и газа"

Выполнил: студент гр. НР-10-2

Дамонов Ф.Ф.

Проверил: Кармацкая О.В.

г. Тюмень - 2013

Введение

Типы пород-коллекторов нефти, газа и воды

Классификация коллекторов

Минералогический состав пород-коллекторов

Условия залегания пород-коллекторов в ловушках нефти и газа

Породы-коллекторы западной Сибири

Заключение

Список использованной литературы

Введение

В любой работе первым необходимым условием для получения хорошего результата является понимание того, с чем мы работаем, то есть понимать объект работы. Наш объект работы - породы-коллекторы. Процессы разработки и эксплуатации нефтяных, газовых и газоконденсатных месторождений тесно связаны с физическими и химическими свойствами пород-коллекторов. Мы не можем оценить запас нефти и газа, если не понимаем таких понятий как пористости, нефтенасыщенности, газонасыщенности. Бурение, выбор способа эксплуатации, выбор методов интенсификации добычи, выбор методов повышения коэффициента извлечения нефти и газа в какой-то степени зависит от свойств горных пород-коллекторов и их поведения при различных воздействиях. Изучению пород-коллекторов и процессов движения через них жидких и газообразных флюидов также придается большое значение в связи с поисками и разведкой нефтяных и газовых месторождений. Существуют многие науки, которые изучают горные породы-коллекторы (геохимия, петрография, физика пласта, геология нефти и газа…). В данном реферате будем рассматривать кратко некоторые вопросы, связанные с классификацией пород-коллекторов, с характеристикой и оценкой пористости, проницаемости и насыщенности пустотного пространства жидкостью и газом, механические и тепловые свойства.

1. Типы пород-коллекторов нефти, газа и воды

Коллектором называют горную породу, способную содержать в себе и отдавать как полезное ископаемое нефть, газ и воду при современных технологиях их извлечения на поверхность. Данное определение предполагает, что при определенных геолого-физических условиях порода может быть коллектором как вместилище флюидов, но не коллектором с точки зрения фильтрационных свойств в рамках современных технологий добычи их.

Породы-коллекторы разнообразны как по минералогическому составу, так и по геометрии пустотного пространства, а также по происхождению - генезису. Наиболее часто они представлены гранулярными (обломочными) типами: песчаниками, песками, алевролитами, реже представлены карбонатными разностями (известняками, доломитами, мергелями). Если для первой группы колекторов пустотное пространство представлено в основном порами (реже трещинами и кавернами), то вторая группа характеризуется порово-кавернозно-трещиноватой структурой емкости коллектора.

Трещиноватость может быть развита как в гранулярных коллекторах, так и з хемогенных и даже в породах магматического происхождения. В этих случаях собственно порода-матрица может быть низкопроницаемой, как бы вложенной в блоки, ограниченные трещинами. Нередко зоны развития трещиноватости характеризуются промышленными притоками нефти или газа (например, кора выветривания фундамента на Трехозерном нефтяном месторождении или трещиноватые граниты Игримского газового месторождения Западной Сибири).

Наличие коллектора в разрезе осадочной толщи не является достаточным условием формирования и сохранения залежи углеводородов в пределах нефтегазоносного региона. Для этого необходимо наличие надежной покрышки непроницаемых пород (глин, солей, плотных карбонатных пород и т.д.). Сочетание этих двух определяющих факторов обусловлено условиями формирования толщ (фаций) в пределах нефтегазовых регионов или его частей. Непрерывные колебательные процессы приводили к трансгрессиям (наступлениям моря на сушу) или регрессиям (отступлениям береговой линии), поэтому возникали различные палеогеографические условия, обусловившие неоднородное строение осадочных пород (их слоистость, линзовидность, прерывистость и т.д.). Отсюда в разрезах продуктивных толщ выделяют шельфовые, авандельтовые, дельтовые и др. отложения. В сочетании с тектоническими факторами эти особенности обусловили различный характер ловушек-резервуаров углеводородов.

Классификация коллекторов

Так как емкость пустот пород может изменяться в широком диапазоне для единицы объема породы и в то же время она предопределяет масштаб запасов нефти, большое значение приобретает классификация коллекторов. По мнению автора наиболее удачна классификация Ф.И. Котяхова , особенность которой состоит в том, что она применима к коллекторам различного происхождения - к осадочным,изверженным и метаморфическим (табл. 1). Трещиноватый тип коллекторов известен на месторождениях США, З.Венесуэлы, Северного Кавказа, З.Приуралья; к кавернозному типу относятся миссисипские известняки в Канаде.

2. Классификация коллекторов

В связи с тем, что емкость пустот пород может изменяться в широких пределах, большое значение приобретает классификация коллекторов, которая по типу коллектора позволяла бы судить об относительных масштабах запасов нефти, газа и воды в залежах, о методах оценки и о способах разработки. Один из возможных вариантов такой классификации коллекторов нефти и газа приведен в табл. 1.

Табл.1. Классификация коллекторов нефти и газа (по Ф. И. Котяхову)

Коллектор

Критерий классификации


Трещинный

Трещиноватая

S в =1; m к =0

Каверновый

Кавернозная

S в =1; m т =0

Каверново-трещинный

Кавернозно-трещинноватая

S в =1; N ик >N ит

Трещинно-каверновый

Трещиновато-кавернозная

S в =1; N ит > N ик

Пористая

m к =1; m т =0 S в <1 или m п >> m к +m т; N ип >>N ик +N ит

Трещинно-поровый

Трещиновато-пористая

S в <1; N ит >N ип; m к =0

Порово-трещинный

Пористо-трещиноватая

S в <1; N ип > N ит; m к =0

Порово-каверновый

Пористо-кавернозная

S в <1; N ип > N ик; m т =0

Каверново-поровый

Кавернозно-пористая

S в <1; N ик > N ип; m т =0

Каверново-трещинно-поровый

Кавернозно-трещинновато-пористая

S в <1; N ик > N ип + N ит

Порово-трещинно-каверновый

Пористо-трещиновато-кавернозная

S в <1; N ип > N ит + N ик

Трещиновато-пористо-кавернозная

S в <1; N ит > N ип + N ик


Примечание: S в - содержание капиллярно-связанной воды; m к, m т, m п - коэффициенты соответственно кавернозности, трещиноватости и пористости; N ип, N ик, N ит - извлекаемые запасы нефти соответственно в порах, кавернах и трещинах.

Особенность этой классификации состоит в том, что она применима к коллекторам любого происхождения: к изверженным, осадочным и метаморфическим. Как видно из табл. 1, к трещиноватым относятся породы, у которых кавернозность равна нулю, а поры заполнены водой или отсутствуют. Иными словами, к трещиноватым относятся породы, в которых нефть и газ содержатся только в трещинах: граниты (например, на нефтяных месторождениях Холл-Гарни и Горхэм в США, на месторождении Ла-Паз в Западной Венесуэле),кварциты (в них отмечены скопления нефти, в частности на месторождениях Крафт-Пруса, Рингдольд и Гейнз в США), метаморфические сланцы (к ним приурочены запасы нефти на многих месторождениях Калифорнии в США) и, наконец, карбонатные отложения в осадочном комплексе (верхнемеловые отложения многих нефтяных месторождений Северного Кавказа, сакмаро-артинские известняки, пермские отложения Приуралья).

К чисто кавернозным относятся породы, у которых трещиноватость равна нулю, а пористая часть матрицы полностью насыщена водой, т. е. в которых нефть или газ содержатся только в кавернах. Коллектора этого типа, до-видимому, ограничены в основном карбонатными породами, особенно с широко развитым карстом. По данным В. А. Бер-Вибе, к таким коллекторам относятся, например, миссисипские известняки в Канзасе, к которым приурочены запасы нефти на месторождениях Уэлч и Борнхолдт (США). Эти известняки отличаются сильной окремнелостью и высокой кавернозностью, которая образовалась в результате выщелачивания солей кальция.

К коллекторам каверново-трещинного и к трещинно-кавернового типов относятся породы, в которых нефть и газ содержатся в трещинах и кавернах, а поры матрицы заполнены капиллярно-связанной водой. Коллекторы этих двух типов отличаются между собой тем, что в первом из них наибольшая часть извлекаемых запасов нефти содержится в кавернах, а во втором - в трещинах. К ним могут относиться, по-видимому, многие карбонатные породы органогенного происхождения. Например, к каверново-трещинного типа коллектору, по имеющимся данным, можно отнести межсолевые и подсолевые семилукско-петинские отложения верхнего девона Речицкого нефтяного месторождения БССР, а к трещинно-кавернового типа - некоторые горизонты меловых отложений Северного Кавказа, а также осинский горизонт нижнего кембрия на Осинской и Атовской площадях Иркутского амфитеатра. К сожалению, кавернозность пород как возможная емкость для скоплений нефти и газа до сего времени почти не изучалась. Поэтому четкое разграничение некоторых коллекторов нефти и газа по их кавернозности из-за отсутствия необходимых данных представляет известные трудности.

Далее из табл. 1 следует, что к пористым относятся породы, у которых коэффициенты кавернозности и трещиноватости равны нулю, а капиллярно-связанная вода занимает только часть объема пор. Однако опыт изучения горных пород показывает, что чисто пористых, как и чисто трещиноватых коллекторов в природе, строго говоря, не существует. Наряду с пористостью в них обычно имеется трещиноватость, а в карбонатных, как уже отмечалось, еще и кавернозность. Поэтому в рассматриваемой классификации деление коллекторов на типы основано на преобладании тех или иных признаков. Согласно этому к пористым относятся также породы, у которых суммарная емкость пор и содержащиеся в них извлекаемые запасы нефти или газа на один-два порядка больше суммарной емкости трещин и каверн, а соответственно и содержащихся в них запасов нефти и газа. Такого типа коллектора наиболее распространены прежде всего среди терригенных отложений.

К трещинно-поровому и порово-трещинному типам коллекторов относятся породы, у которых извлекаемые запасы нефти или газа в порах и в трещинах соизмеримы. В первом из них извлекаемые запасы преобладают в трещинах, а во втором - в порах, хотя в обоих случаях емкость пор существенно больше емкости трещин. Характерная особенность этих коллекторов состоит в том, что если бы в них отсутствовали трещины, то приуроченные к ним нефтяные или газовые залежи не имели бы промышленного значения.

Наиболее распространенный из них порово-трещинный тип коллекторов; к нему относятся, например, значительная часть ме-нилитовой толщи терригенных отложений на нефтяных месторождениях Долина, Рыпне и Битково в Западной Украине, карбонатные отложения цехштейн верхней перми на месторождении Райнкенхаген в ГДР и др. Примером трещинно-порового типа коллектора могут служить те же карбонатные отложения цехштейн верхней перми па нефтяном месторождении Деберн (ГДР).

К порово-каверново-трещинному, каверново-порово-трещинному и трещинно-порово-каверновому типам коллекторов относятся породы, в которых извлекаемые запасы либо равноценны во всех видах пустот, либо превалируют в одном случае в порах, а в другом - в кавернах, в третьем - в трещинах. Этот тип коллектора может быть распространен только на карбонатные породы с развитой емкостью пустот первичного и вторичного происхождения.

В порово-каверновом и каверново-поровом типах коллекторов нефть и газ содержатся как в порах, так и в кавернах. В одном случае их больше в порах, в другом - в кавернах.

Из изложенного видно, что рекомендуемая классификация коллекторов не вытекает из литолого-петрографических и петрофизических свойств пород. В ее основе находится конечное геологическое состояние пород, обусловленное их происхождением и последующими изменениями, которыми определяются также и литолого-петрографические и петрофизические свойства пород.

Из этого, однако, не следует, что конечное состояние коллекторов нефти и газа должно зависеть в такой же мере от литолого-петрографических и петрофизических свойств пород. Литолого-петрофические и петрофизические свойства пород отображают только некоторую, далеко не полную, часть конечного состояния коллекторов. Поэтому классификация коллекторов, основанная на литолого-петрографической или петрофизической характеристике пород, не может дать наиболее полной характеристики их свойств и быть в этом смысле полноценной. Руководствуясь в основном теми же соображениями, А. И. Кринари пришел к правильному выводу, что многие классификации коллекторов, основанные на литолого-петрографических и петрофизических признаках, неудачны.

Само существование большого числа классификаций коллекторов свидетельствует о неблагополучном состоянии этого вопроса. Например, П. Д. Джонс и В. А. Вер-Вибе рекомендуют классифицировать терригенные породы по гранулометрическому составу. При этом породы с размером частиц 1-0,5 мм П. Д. Джонс относит к грубозернистым, а В. А. Вер-Вибе к грубозернистым относит породы с размером частиц 2-2,5 мм; мелкозернистыми П. Д. Джонс называет породы с размером частиц 0,25-0,125, а В. А. Вер-Вибе - 0,25-0,06 мм и т. д.

Г. И. Теодоровичем предложена классификация пористых карбонатных коллекторов по размеру поровых каналов и их проницаемости. Примерно на том же принципе построены классификации терригенных коллекторов Ф. А. Требина и А. А. Ханина.

Аналогичное положение существует в отношении трещиноватых коллекторов. А. С. Храмушев разделяет трещиноватость на региональную и локальную, которые дополнительно подразделяет на секущую, пластовую и поверхностную. А. Е. Михайловым предложена генетическая классификация, согласно которой трещины делятся на тектонические и нетектонические. Нетектонические им подразделяются в свою очередь на первичные, искусственные, оползневые, на образованные в результате выветривания и расширения пород, а тектонические - на кливажные и трещины разрыва. Е. М.

Изложенный здесь перечень классификации коллекторов, конечно, не исчерпывает всех рекомендаций в этой области. Он служит лишь некоторой иллюстрацией изложенных выше соображений. К тому же главное здесь - не многочисленность классификаций, а основа, на которой они создавались, и вытекающие из них практические выводы.

В этом смысле обращает на себя внимание классификация А. А. Ханина, которая рекомендуется им как для песчаных, так и для карбонатных коллекторов. Согласно этой классификации коллекторы нефти и газа с пористостью меньше 5-12% и проницаемостью меньше 10 мД практически не продуктивны и могут представлять промышленный интерес лишь при достаточной их мощности. Если следовать этому утверждению, то в ряде случаев и при достаточной мощности пласта легко прийти к выводу о промышленной непродуктивности коллектора, например, при проницаемости его меньше 1 мД. Однако в действительности это далеко не так. Известняки асмари в Иране имеют проницаемость 0,5 мД, а средний дебит скважин, эксплуатирующих эти известняки, составляет несколько тысяч тонн нефти в сутки при очень малых депрессиях. Карбонатные отложения цехштейн верхней перми в Центральной и Западной Европе имеют мощность 15-20 м и проницаемость, как правило, меньше 1 мД. Несмотря на это, на нескольких десятках месторождений из них ведется промышленная добыча нефти.

Менилитовая толща терригенных отложений палеогена в Западной Украине имеет пористость меньше 12%, а проницаемость в основном меньше 1 мД. Тем не менее из нее ведется промышленная добыча нефти на ряде месторождений в течение многих десятилетий. Надо заметить, что многие авторы классификаций, по-видимому, предвидя возможность подобного рода ошибочных выводов, избегали в своих работах далеко идущие рекомендации. Более того, в одной из самых ранних работ в этой области, которой пользовался в своей классификации А. А. Ханин, Г. И. Теодорович справедливо указывал, что если в коллекторе имеются трещины, результаты определения проницаемости пласта по керну могут привести к неправильным выводам о его продуктивности. Речь в данном случае, разумеется, идет не об отрицании важности литолого-петрографической и петрофизической характеристики пород, а о невозможности использования многих классификаций, основанных на этой характеристике, для оценки промышленных запасов нефти и газа вследствие произвольного деления коллекторов на типы и ошибочности вытекающих из этого практических выводов. Это обстоятельство и побуждает подойти к классификации коллекторов с иных позиций.

Фильтрационные и емкостные свойства пород-коллекторов нефтяного и газового пласта независимо от типа коллектора характеризуются рядом основных показателей:

1) пористостью;

2) проницаемостью;

) удельной поверхностью;

) гранулометрическим составом;

) механическими свойствами;

) насыщенностью пород нефтью, водой и газом.

Перечисленные свойства находятся в тесной зависимости с размерами и формой зерен гранулярных коллекторов, определяющих основные запасы нефти в месторождениях Западной Сибири. По размерам различают структуры обломочных пород: псефитовую (обломки размером более 2 мм), псаммитовую (0,1-0,2 мм), алевритовую (0,01-0,1 мм) и пелитовую (мене 0,01 мм). Сцементированные разности этих пород (песчаники, алевролиты) характеризуются различными фильтрационно-емкостными свойствами в зависимости от состава и количества цемента. В качестве цементирующего материала известны глинистые вещества, карбонаты и другие компоненты.

Минералогический состав пород-коллекторов

Опыт разработки месторождений показал, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% - к карбонатам, около 1% - к метаморфическим и изверженным породам.

Метаморфические и изверженны породы, образовавшиеся при высоких температуре и давлении, не могут служить коллекторами для углеводородов. Нахождение в них нефти и газа вызвано миграцией последних в выветрелую часть этих пород, в которых в результате выщелачивания или выветривания, а так же под действием тектонических сил могли образовываться вторичные пористость и трещиноватость.

Например, на Шаимском месторождении Западно-Сибирской низменности нефть обнаружена в выветрелой части фундамента, сложенного гранитами. В месторождении Литтон Спрингс (Техас) нефть получают из пористого и трещиноватого серпентина. В месторождении Панхендл (Техас) нефть содержится в размытом граните, базальтном конгломерате; в месторождениях Колорадо (Флоренс, Тоу-Крик, Ренджели и др.), Калифорнии (Санта-Мария, Буена-Виста-Хилс) - в трещиноватых глинистых сланцах. В Западном Техасе, в известном месторождении Спраберри, газ получен из трещиноватых аргиллитов, сланцев и алевролитов. Изверженные породы основного состава образуют часть подземного нефтяного резервуара в месторождении Фэрбро (Мексика). В некоторых нефтяных месторождениях Канзаса и Оклахомы нефть добывается из пористой окремнелой брекчии.

МИНЕРАЛОГИЧЕСКИЙ СОСТАВ ТЕРРИГЕННЫХ ПОРОД.

Основные черты строения коллекторов нефти и газа зависят от происхождения, но происхождение в данном случае - лишь начало, которым обусловливаются многие свойства пород. В формировании коллекторов наряду с происхождением большое значение имеют вторичные процессы, а для терригенных пород, кроме того, их минералогический состав. Образование терригенных осадков схематически представляет собой процесс разрушения земной коры и концентрирование возникших в результате этого обломочных материалов. При этом в обломочные материалы могут входить обломки самой породы, частицы исходных минералов, а также продукты, прошедшие не только механическое дробление, но и химическую перестройку. В процессе такой дезинтеграции первоначальный минералогический состав материнской породы нарушается, и вновь образованные осадочные породы имеют иной состав.

Как известно, литосфера состоит преимущественно из алюминосиликатов, основные ее минералы полевые шпаты и кварц. Вследствие различной сопротивляемости их выветриванию полевые шпаты дают начало пелитам, состоящим в основном из глинистых минералов, а кварц - псаммитам. В соответствии с этим грубообломочные материалы образуют, например, отложения галечника, гравия и конгломератов, кварц в основном образует зернистые породы в виде песчаников, алевритов и алевролитов, а полевые шпаты после соответствующего химического изменения образуют глины, аргиллиты и т. п. Чаще всего последние в осадках встречаются вместе. Так, средний минералогический состав песчаников по Кларку следующий (в %):

Кварц ………………………………………………….….66,8

Полевые шпаты……………………………………………11,5

Глинистые минералы……………………………………….6,6

Лимонит……………………………………………………..1,8

Карбонаты…………………………………………………..11,8

Другие минералы…………………………………………....2,2

Если исходными породами были, например, граниты и кварциты, то при соответствующих условиях выветривания и переноса содержание кварца в песках может достигать 95-99%.

Петрографический анализ осадочных пород показывает, что в общей сложности в них встречается более 111 минералов. Однако большинство этих минералов либо отсутствует, либо составляет ничтожную величину. Доминируют из них, как упоминалось, кварц и полевые шпаты, долевое участие которых в осадконакоплении обуславливает коллекторские свойства терригенных пород.

Если в осадконакоплении в основном принимали участие полевые шпаты и продукты их химического преобразования, то, согласно изложенному выше, образованная ими порода может иметь глинистую основу и по этой причине оказаться плохим коллектором или вообще им не быть. И, наоборот, при участии в осадконакоплении в основном кварца, образованная им порода имеет песчаную основу и, как правило, обладает хорошими коллекторскими свойствами. Таким образом, минералогический состав пород влияет на их коллекторские свойства через гранулометрический состав, который при прочих равных условиях определяется неодинаковой прочностью минералов.

МИНЕРАЛОГИЧЕСКИЙ СОСТАВ КАРБОНАТНЫХ ПОРОД.

Карбонатные породы представляют собой осадочные образования, сложенные на 50% и более карбонатными минералами. В число последних входят кальцит (и арагонит) - CaCO 3 , доломит - CaMg(CO 3) 2 , а также значительно более редко встречаемые магнезит - MgCO 3 , анкерит - Fe, Ca(CO 3) 2 , сидерит - FeCO 3 , стронцианит - SrCO 3 и др.

Из этих карбонатных минералов широко распространены в природе только кальцит и доломит, остальные встречаются в виде рассеянных выделений, отдельных линз, гнёзд, редко образуя более или менее значительные сплошные скопления. В этих случаях они имеют важное практическое значение как минеральное сырье, используемое во многих областях народного хозяйства.

Кальцит и доломит, являясь основными породообразующими карбонатными минералами, слагают известняки, доломиты и породы смешанного известково-доломитового состава. Эти породы встречаются в отложениях различных тектонических структур (платформенных и геосинклинальных) и самого различного возраста, от докембрия доныне. Доля их в общей массе осадочных образований земной коры оценивается по-разному. По всей вероятности около 20% являются наиболее реальными.

Условия залегания пород-коллекторов в ловушках нефти и газа

Породы-коллекторы, содержащие нефть и газ, в большинстве разрезов нефтегазоносных областей не образуют непрерывной пачки и чередуются с пластами других пород, не содержащих их. Такого рода комплексы называют нефтегазоносными свитами.

Породы-коллекторы являются частью нефтегазоносной свиты, выраженной в определенной литофации. А. В. Ульянов (1960) выделяет 15 самостоятельных литологических, или фациальных, групп (литофаций). Наиболее распространены известняки и доломиты, глины (сланцы) с прослоями и линзами песчаников и песков, песчаники и пески. Реже всего нефтегазоносные свиты представлены в литофациях: песчаники с прослоями конгломератов; глины (сланцы) с прослоями и линзами известняков. В фациальных группах среди нефтеносных свит наиболее широко развиты нормальные морские осадочные отложения, угленосная фация и пестроцветные породы. Меньше распространены отложения флишевой фации.

М. Ф. Мирчинк (1955) различает в сложном процессе формирования залежей и месторождений нефти и газа два основных условия: первое - общие процессы, вызывающие движение нефти и газа по пористым пластам-коллекторам, и второе - условия, приводящие к скоплению этих флюидов в одном месте.

Флюиды перемещаются из областей нефтегазообразования в зоны, благоприятные для нефтегазонакопления. Нефть и газ скапливаются в породах-коллекторах в условиях, ограничивающих дальнейшее движение флюидов. К причинам, ограничивающим движение флюидов, М. Ф. Мирчинк (1955) и Н. Ю. Успенская (1955) относят: структурный, литологический и стратиграфический факторы, исходя из генетического принципа формирования залежей. По преобладающему значению одного из этих факторов в формировании залежей М. Ф. Мирчинк и Н. Ю. Успенская предлагают залежи нефти и газа подразделить на три главных типа: 1) структурные, 2) стратиграфические и 3) литологические. В свою очередь они подразделяются на ряд подтипов, или групп, которые делятся также на отдельные виды.

По мнению А.В. Ульянова (1954), основным фактором, определяющим скопление в недрах промышленных количеств нефти и газа, являются фациальные особенности осадков и тектонические (структурные) условия залегания проницаемых пластов. Для образования промышленных скоплений нефти и газа вполне достаточно даже весьма незначительного наклона пластов измеряемого долями градуса. Вследствие этого в платформенных условиях роль фациального фактора выявляется с особой полнотой. Первым, кто обратил внимание на это обстоятельство, был акад. И. М. Губкин (1913 г.), установивший характерные особенности рукавообразной формы залежи нефти Майкопского нефтяного месторождения.

Скопления нефти и газа в ловушках образуют природные резервуары. Пластовый резервуар представляет собой пласт-коллектор, ограниченный на значительной площади в кровле и подошве плохо проницаемыми породами.

По соотношению коллектора с ограничивающими его плохо проницаемыми породами И.О. Брод (1951) предлагает выделять три основных типа природных резервуаров: I - пластовые резервуары; II - массивные резервуары; III - резервуары неправильной формы, литологически ограниченные со всех сторон.

Массивный природный резервуар - это мощная толща проницаемых пород, перекрытая практически непроницаемыми породами, ограниченная с боков плохо проницаемыми породами. Коллекторы, слагающие массивные резервуары, могут быть литологически однородными или литологически неоднородными. К литологически неоднородным коллекторам массивного природного резервуара относят, например Шебелинское газовое месторождение.

К резервуарам неправильной формы, литологически ограниченным со всех сторон, относят ловушки-резервуары всех видов, насыщенные газообразными и жидкими углеводородами, окруженные со всех сторон практически непроницаемыми породами.

Залежью нефти и газа, по Н.А.Еременко (1961), называется всякое элементарное, или единичное, их скопление в пластах-коллекторах. Под месторождением нефти и газа, по И. О. Броду (1951), следует понимать совокупность залежей этих продуктов в недрах одной и той же площади, образование которых контролируется единым структурным элементом. Количество залежей в месторождении, как и литология коллекторских толщ, могут быть самыми различными.

Формы залегания коллекторских толщ тесно связаны с формами залежей нефти и газа и в то же время имеют свои особенности.

Залежи формируются в процессе миграции жидких и газообразных углеводородов через пористые среды. Любые перемещения нефти, газа и воды в земной коре называют миграцией. Основным фактором, способствующим миграции, являются тектонические силы, предопределяющие наклоны пластов, и в отдельных случаях нарушение сплошности залегания пластов. Наравне с латеральной миграцией пластовых флюидов при определенных условиях (зоны нарушений, трещины; "литологические окна") может происходить и вертикальная миграция.

Под действием силы всплывания нефть и газ мигрируют вверх по резервуару. Двигаясь по пористому пласту вдоль наклонной кровли резервуара, сложенной плохо проницаемыми (практически непроницаемыми) породами, встречая на своем пути препятствие (экран), они образуют скопления, или залежи (Савченко, 1953; Gussow, 1955; Козлов, 1959). Генетически форма залежи обусловливается образованием ловушки, являющейся частью природного резервуара.

А. И. Леворсен (1958) предлагает все ловушки подразделять на три основных типа: 1) структурные; 2) стратиграфические; 3) комбинированные структурные и стратиграфические.

Структурные ловушки подразделяются в соответствии с характером деформации слоев, изменением угла падения, сбросами и сочетанием складок и сбросов. Различают деформации сжатия, образующие симметричную, асимметричную и опрокинутую антиклинали, равноосный купол, синклиналь; деформацию, обусловленную различной степенью уплотнения слоев вокруг погребенных выступов; деформацию, обусловленную возрождением (поднятием) погребенной структуры и др.

Стратиграфические ловушки формируются не только в процессе осадкообразования, но являются во многих случаях также следствием процессов диагенеза и несут следы воздействия тектонических сил, обусловливающих наклон пластов. Поэтому многие исследователи считают наименование "стратиграфические ловушки" неудачным. Однако большинство под стратиграфической ловушкой понимает такую, в которой более поздняя структурная деформация (тектонические эффекты) играла подчиненную роль в процессах миграции, аккумуляции (накопления) и сохранения нефти и газа в залежи (Пирсон, 1961). К категории таких ловушек относят цитологические и стратиграфические, образовавшиеся в результате процессов осадкообразования в прибрежной зоне и развития береговой линии. Иногда трудно отличить лито- логическую залежь от стратиграфической. К литологическим относят залежи, приуроченные к участкам и зонам выклинивания пласта-коллектора; залежи, образовавшиеся в связи с замещением проницаемых пород непроницаемыми; залежи, приуроченные к линзовидно залегающим породам-коллекторам, рукавообразные (шнурковые).

Примерами последних являются ловушки линзообразной формы, состоящие из скоплений песка или песчаника, образовавшиеся в условиях регрессивной древней береговой суши, погружающейся в воду (прибрежный бар, вытянутые барьеры, береговой вал, песчаный риф), например, Канзасская шнурковая залежь в Гринвальде; залежи Олимпии и шнурковые залежи Ред Форк в Оклахоме; Мьюзик Маунтен в Пенсильвании; залежи 2-го и 3-го песчаников Венанго в Пенсильвании и др. Шнурковые газовые залежи Мичигана, Ред Форк в Оклахоме связаны с отложениями песка над прибрежными поднятиями, мелью или банками.

Залежь Барбенк в Оклахоме приурочена к остроконечным барам и мысам с дюнными холмами и гребнями. Песчаные породы-коллекторы сложены хорошо сортированным обломочным материалом. Подобные породы-коллекторы содержат залежи нефти в Майкопском нефтяном районе Северного Кавказа (Хельквист, 1954).

Линзообразные формы песка и песчаника (литологические ловушки) с четко выраженной косой слоистостью, чередованием песков и глин, образовавшиеся в условиях колеблющейся береговой линии морского бассейна (дельта), характерны для песчаных коллекторов месторождений Бредфорд и Гранд Валлей в Пенсильвании. В условиях колеблющейся береговой линии наблюдается также клинообразное залегание терригенных и хемогенных осадков. Например, к пористому доломиту и гипсу, переслаивающимися с глинистыми сланцами, приурочено газовое месторождение Хьюготон в Канзасе и Оклахоме.

При устойчивой древней береговой линии моря коллекторами могут быть коралловые рифы. С ними связаны месторождения Канчуринское, Мусинское и другие в Ишимбайском Приуралье, а также Кэпитэн Риф в Техасе, Нью-Мексико.

В формировании стратиграфических залежей преобладающая роль принадлежит стратиграфическим несогласиям. Сюда относят залежи, связанные с пластами-коллекторами, срезанными эрозией и прикрытыми несогласно налегающими плохо проницаемыми породами; залежи, связанные со стратиграфическими несогласиями, приуроченными к погребенным структурам и эродированной поверхности погребенных останков палеорельефа и выступов кристаллических пород.

К типу комбинированных структурных и стратиграфических ловушек относят пласты-коллекторы, структурные признаки которых эквивалентны признакам, характерным как для стратиграфических, так и для литологических ловушек в отношении характера аккумуляции, миграции и условий сохранения нефти и газа. Комбинированные структурные и стратиграфические ловушки в общих чертах подразделяются С. Д. Пирсоном (1961) на два основных подтипа в зависимости от действовавшего процесса перерыва, который мог быть эрозионным или деформационным.

Под термином "деформационный перерыв" понимается такой процесс, во время действия которого пластическая деформация с растяжением и механическим сдавливанием пластов коллектора играют важную роль в запечатывании ловушки.

Комбинированные структурные и стратиграфические ловушки, связанные с эрозионным перерывом, обычно характеризуются угловым несогласием в залегании слоев, возникшим в результате срезания антиклинальных крыльев структур. На рис. 1 дан типовой разрез залежи Оклахома-Сити; породы-коллекторы, вмещающие залежи, характеризуются первичной пористостью.

Рис. 1. Типовой разрез залежи Оклахома-Сити (по Пирсону).

На рис. 2 приведен разрез залежи с коллектором - известняком с вторичной пористостью, возникшей вследствие выщелачивания карбонатной породы.

Рис. 2. Коллектор-известняк с вторичной пористостью.

порода коллектор нефть газ

К подобному типу относят большинство залежей, приуроченных к кремнистым известнякам (Канзас), линзу Арбакл, залежь Западный Эдмонд в Оклахоме, залежи Восточно-Техасского месторождения и песок Вудбайн с коллеутором, - несогласно залегающими песками, образовавшимися в результате выщелачивания известкового цемента, известковистых песчаников. Сюда же относят структурную зону Буа д"Арк с коллектором - пористым доломитом, образовавшимся вследствие замещения кристаллического известняка доломитом; кроме пористости гранулярного типа доломиты пронизаны трещинами и кавернами растворения.

Комбинированные структурные и стратиграфические ловушки, связанные с эрозионным перерывом, могут возникнуть также в результате эрозионного стратиграфического несогласия. Так, залежи Луизиана и ЭТС в Техасе связаны со слабыми изгибами слоев поверхности несогласия; коллектором служат пористые выщелоченные известняки и доломиты. Примером ловушек в выветрелых породах древней: поверхности суши являются многие залежи газа в Тюменской области Западно-Сибирской низменности (Шаимское, Ленинское, Березовское и др.). Подобные залежи известны в США, например, залежь Вери в Канзасе и конгломерат Суй (рис. 3); порода-коллектор не имеет чёткого стратиграфического положения и главным образом связана с террасовидной формой палеорельефа.

Рис. 3. Коллектор - выветрелая порода, слагающая древнюю поверхность суши (залежь Вери в Канзасе).

Среди комбинированных структурных и стратиграфических ловушек выделяются ловушки, образование которых связано с деформационным (структурным) перерывом. Примерами ловушек, образовавшихся при выклинивании пластов путем их сдавливания, служит большинство соляных куполов с наиболее сильно выраженным ядром протыкания и расположением пластов-коллекторов по периферии того или иного соляного штока (рис. 4). Подобные залежи известны в Урало-Эмбенской области, на побережье Галф Коста в Техасе и Луизиане и в других пунктах.

Рис. 4. Залегание пластов-коллекторов по периферии соляного штока.

Породы-коллекторы западной Сибири

Западно-Сибирская нефтегазоносная область по геологическому строению является молодой платформой. Платформенный чехол состоит из осадочных образований мезозоя и кайнозоя. Мощность осадочного чехла в краевых частях платформы 100 - 1500 м, к центру увеличивается до 3000-4000 м (Дмитриев, Ровнин, Эверье, 1962). Мезозойские отложения залегают на древнем сильно дислоцированном палеозойском фундаменте, представленном комплексом изверженных, осадочных и метаморфических пород - гранитами, гранито-гнейсами, порфиритами, диабазами, глинистыми сланцами. В западной и центральных частях Западно-Сибирской низменности выделяются крупные региональные структуры - своды и впадины (Гурари, Ростовцев и др., 1963); сводовые поднятия - Северо-Сосьвинское, Коидинское, Тазовское, Обское, Нижневартовское, Александровское, Нижневахское и др. - имеют протяженность 300-400 км и амплитуду 700-800 м. Сводовые поднятия разделяются сопредельными впадинами - Надымской, Ханты-Мансийской, Верхнекондинской, Юганской, Пуровской и др. Амплитуды погружения по поверхности фундамента достигают во впадинах 1300 - 1500 м. Локальные поднятия в основном представляют собой складки с очень пологими углами падения на крыльях, измеряемыми минутами и единицами градусов.

Промышленная нефтегазоносность связана с прибрежно-континентальными отложениями, составляющими нижнюю часть платформенного чехла Западно-Сибирской платформы.

По данным Т. И. Гуровой и В. П. Казаринова (1962), Л. П. Колгиной, А. Г. Орьева, Е. С. Рабиханукаевой и О. Л. Черникова (1961), на протяжении юрского и неокомского времени на территории Западно-Сибирской низменности неоднократно существовали условия, способствующие накоплению мощных толщ песчаных и алевритовых пород, более или менее отсортированных, однородных, характеризующихся хорошими коллекторскими свойствами. Накопление этих отложений происходило в аллювиальных условиях и в прибрежной части крупных озерных и лагунных бассейнов в нижне- и среднеюрское и готерив-барремское время; среди прибрежно-морских фаций в байос-нижнекелловейское и верхнеюрское время и в мелководной морской обстановке в валанжине. Формирование песчаных толщ происходило главным образом в зонах, расположенных вблизи от областей сноса, где отлагался более крупнозернистый материал.

Среди песчано-алевритовых пород юры и неокома наиболее полно процессы перекристаллизации, растворения, замещения, деформации, уплотнения и вторичного минералообразования проявляются в отложениях нижнее-среднеюрского - нижнекелловейского возраста. Эти процессы проявились в ухудшении коллекторских свойств пород.

Наиболее мощные пласты песчаных и алевритовых пород с высокой емкостью и проницаемостью характерны для отложений верхнего валанжина и готерив-баррема.

Коллекторы кварцевого и существенно кварцевого состава приурочены к Зауральской части Западно-Сибирской низменности, что связано с наличием мощной коры выветривания в период, предшествовавший накоплению осадков мезозоя. На востоке низменности породы-коллекторы кварцевого состава отмечаются лишь в отложениях нижней и средней юры.

В юго-восточной и восточной частях низменности породы-коллекторы обогащены полевым шпатом (аркозовые и кварцево-полевошпатовые песчаники и алевролиты), что связано с составом пород областей сноса (Колгина, Орьев, Рабиханукаева, Черников, 1961).

Зона регионального выклинивания юрских отложений шириной до 200 км прослеживается вдоль Северо-Сосьвинского и Кондинского сводов и Туринского выступа и является, по мнению многих исследователей, зоной регионального газонефтенакопления в верхнеюрской песчано-глинистой толще. К ней приурочены Березово-Игримская группа газовых месторождений и Шаимское нефтяное месторождение.

В пределах Западно-Сибирской низменности нефтяные месторождения открыты в трех районах: Шаимском, Красноленинском и Сургутском. В первых двух районах это однопластовые залежи, сформировавшиеся в базальном слое в период верхнеюрской трансгрессии. Залежи располагаются на породах фундамента и нижней - средней юры. Свободные дебиты нефти в Шаимском районе достигают в ряде скважин 350 т/сутки; на Каменном месторождении нефти с глубины 2416-2423 м. получен свободный дебит нефти около 1000 т/сутки. В Сургутском районе развиты многопластовые сводовые залежи, приуроченные к отложениям неокома. Так, на Усть-Балыкской структуре притоки нефти получены из 8 пластов в отложениях неокома, а также из юрских пород, На Мегионской структуре разведочными работами установлена нефтеносность двух песчаных пластов в нижнемеловых отложениях. Песчаный пласт, залегающий в отложениях верхнего валанжина, вскрытый скв. 1, дал приток нефти дебитом 226 м 3 /сутки через 20-мм штуцер. Пласт сложен песчаниками с пористостью 20-23% и проницаемостью 280 мд (средние данные). Из этого же пласта на Соснинской структуре получена нефть с дебитом до 450 т/сутки. На Локосовской структуре из пласта, залегающего в нижнемеловых отложениях (с глубины 2171-2180 м), получен фонтан нефти со свободным дебитом около 350 т/сутки; на Медведевской структуре - нефть из юрских песчаников со свободным дебитом 350 т/сутки.

Залежи газа в Березовском газоносном районе приурочены к базальтному песчаному горизонту, залегающему на выступах палеозойского фундамента. Песчаники на сводах структур часто отсутствуют и появляются на их крыльях, окаймляя так называемые "лысые" своды (Дмитриев, Ровнин, Эрвье, 1962; Ансимов, Васильев, Ровнин др., 1962). Покрышкой газовых залежей служит толща аргиллитов валанжина мощностью 70-100 м. Промышленные газоносные горизонты залегают на глубине 1200-1780 м, пластовые давления соответственно составляют 127-184 ат; дебиты газа изменяются от 500 до 5000 тыс. м 3 /сутт. Месторождения района приурочены к юго-восточному склону Северо-Сосьвинского регионального поднятия, к области выклинивания юрских и валанжинских отложений. Коллекторами являются базальтные прибрежно-морские песчаники во-гулкинской толщи, возраст которой в разных участках района изменяется от келловейского до верхневолжского и, возможно, до валанжинского и готеривского (Нестеров, 1962).

В другой группе месторождений - Мегионском и Усть-Балыкском - нефтяные залежи приурочены к более молодым нижнемеловым отложениям. Месторождения в отличие от Приуральских многопластовые, сводового типа. Шаимское месторождение нефти приурочено к зоне выклинивания юрских песчаников, образующих ряд брахиантиклинальных структур (Мулымьинскую и др.), и к трещиноватым зонам выступов фундамента. Притоки нефти из пород фундамента составляют 0,2-2,5 т/сутки.

По данным Л. В. Ровниной (1962), возраст продуктивного горизонта в Березовском районе изменяется от средней юры - келловея до валанжина, в Шаимском районе возраст верхнеюрский (кимеридж). Нижняя часть продуктивной толщи сложена ракушечниками. Иногда между нижней и верхней пачками залегают прослои глин и алевролитов. Продуктивный горизонт называют "березовским горизонтом". Он формировался на эродированной поверхности кристаллического фундамента в основном в прибрежно-морских условиях (Маркевич, Козлова, 1962).

На Шаимском и Мартымыльинском месторождениях нефти породами-коллекторами являются базальный верхнеюрский песчаник мощностью от 0 до 15-20 м, а на "лысых сводах" - изверженные и метаморфические породы фундамента.

В восточной части Нижневартовского сводового регионального поднятия на Соснинском месторождении нефти продуктивным горизонтом является тюменская свита. Испытание скв. 1 на глубине 2128-2140 м выявило приток нефти, равный 350 т/сутки через 12-мм штуцер.

В 1962 г. на территории Томской области из скв. 3 Усть-Сильгинской структуры, расположенной в северо-западной части Сенькино-Сильгинского вала, получен фонтан газа 100 тыс. м 3 /сутки и конденсата более 14 тыс. м 3 /сутки при статическом давлении на устье 178 am и пластовом 248 am.

Усть-Сильгинское поднятие приурочено к локальному выступу доюрского фундамента (Левченко, 1962). На размытой поверхности фундамента несогласно залегает тюменская свита нижней и средней юры, представленная часто переслаивающимися плотными полимиктовыми песчаниками, алевролитами глинистыми плотными, иногда углистыми аргиллитами; в нижней части свиты имеются пласты угля, мощностью до 20 м. Мощность свиты 137-236 м. Марьяновская свита (верхняя юра и валанжин) сложена аргиллитами с редкими тонкими прослоями песчаников и алевролитов. В подошве свиты песчаники, алевролиты и аргиллиты часто переслаиваются. Мощность свиты 104-118 м.

Продуктивные горизонты, содержащие газ и конденсат, приурочены к средней и верхней частям тюменской свиты и к подошве марьяновской свиты. Открытая пористость песчаников колеблется от 13 до 22 %; проницаемость не превышает 83 мд (Левченко, 1962).

В северо-западной, восточной и юго-восточной частях низменности в отложениях нижней - средней юры - нижнего келловея развиты песчаные породы, в ряде случаев с высокими коллекторскими свойствами: открытая пористость около 26%, проницаемость 0,4-4,7 д. Ухудшение коплекторских свойств пород нижней - средней юры наблюдается главным образом в центральной части низменности и в районе широтного течения р. Оби. Оно связано с проявлением процессов вторичного минералообразования и с обилием глинистого материала в породах (Гурова, 1961). Значительное содержание глинистого цемента в песчаных породах, носящее региональный характер, связывается с условиями накопления коллекторских толщ главным образом континентального происхождения. Т. И. Гурова отмечает особенно обильное содержание глинистого цемента в породах Назинского и Сургутского районов (преобладание пойменных фаций). Коллекторы более высоких классов приурочиваются к участкам, зоны обрамления Западно-Сибирской низменности с повышенным содержанием в породах среднезернистых песчаных частиц и пониженным количеством пелитовых частиц. Так, в Березовском районе развиты породы-коллекторы I и II классов; к западу от Тобольска - III и IV классов; к юго-востоку от Тобольска - I-V классов; в районе Омска - III и IV классов; в Сургутско-Барабинском районе - V класса; в районе Колпашево - III и IV классов и к западу от него - III и более высоких классов.

В разрезе верхней юры наиболее мощные пласты песчаных пород и органогенно-обломочных известняков, относимых к коллекторам I и II классов, вскрытых в Шаимском нефтеносном и Березовском газоносном районах Приуральской части низменности, которая располагалась в прибрежной области морского бассейна (Гурова, 1961; Гурова, Казаринов, 1962).

В Березовском, районе, в зоне развития структур Березовской, Деминской, Пунгинской, Чуэльской и др., породы продуктивного газоносного горизонта представлены песчаниками кварцево-поле-вошпатовыми и кварцевыми, средне-, разно- и мелкозернистыми, слабоуплотненными. Открытая пористость пород 25-30%; проницаемость 1,4-2,4 д. Песчаники кварцевого состава характеризуются более высокой проницаемостью, чем кварцево-полевошпатовые и полимиктовые.

С вогулкинской толщей связаны все газовые месторождения Березовского района. Продуктивная вогулкинская толща юры представляет собой прибрежную фацию абалакской или, в некоторых случаях, тутлеймской свит и залегает на породах фундамента (граниты, гранито-гнейсы, гранодиориты), коры выветривания или на осадках тюменской свиты. Состав толщи соответственно песчанистый: песчаники мелкозернистые, средне-мелкозернистые, разнозернистые, гравелитистые.

Вогулкинская толща делится на две пачки: нижнюю, песчано-гра-велитовую, и верхнюю, известково-песчанистую или известково-ра-кушечниковую. Мощность толщи колеблется от 3-4 до 50-80 м и более (по скв. 6-Р Чуэльской структуры 121 м; по скв. 23-Р Южно-Алясовской структуры 103 м). К сводам структур мощность уменьшается, а нередко полностью выклинивается. Проницаемость продуктивного пласта, рассчитанная по данным испытания скважин, составляет: на Березовской структуре 540-2000 мд, на Деминской - 260-1120 мд, на Южно-Алясовской и Северо-Алясовской - 130- 4200 мд и на Чуэльской - 110-880 мд (Ансимов, Васильев, Ровнин, 1962).

Газонасыщенноеть пород продуктивного пласта на площади Бе- резовских месторождений изменяется в пределах 0,68-0,94. Коэф- фициент газонасыщенности на Березовском месторождении по про- мыслово-геофизическим данным равен 0,72 и на Деминском - 0,92 (Микаэлян, 1961)

В Березовском газоносном районе, по данным Л. М. Зорькина (1963), для нижнего продуктивного горизонта (вогулкинская толща) наблюдается возрастание минерализации к центральным частям Западно-Сибирской низменности. На этом общем фоне выделяется полоса повышенных минерализаций, протягивающаяся от Макаркинских структур через Березово-Устремскую зону к Игриму. Этот факт находит объяснение в изменении коллекторских свойств горизонта и соответственно - в гидродинамических условиях пласта. Так, к северо-западу от Березовского района происходит улучшение коллекторских свойств горизонта на общем фоне опесчанивания всего разреза мезозоя. Появление относительно высокоминерализованной зоны (Макаркино - Игрим) связано с резким ухудшением коллекторских свойств пород горизонта с одновременным сокращением мощности вплоть до полного выклинивания живого сечения потока (наличие "лысых" сводов фундамента, перекрытых глинами;перекрытие потока газовыми залежами). Все это обусловило резкое ухудшение водообмена, о чем свидетельствует так же, помимо общей минерализации, степень метаморфизма вод, концентрация в водах брома и йода.

В центральной части Западно-Сибирской низменности в отложениях вогулкинской толщи в основном преобладают песчано-алевритовые породы-коллекторы V класса. В восточной части низменности развиты породы-коллекторы IV и V классов.

По данным С. И. Шишигина и В. Л. Кокунова (1961), для тюменской свиты (отложения средней и верхней юры) в районе Назино-Пудино-Колпашево характерны песчаники средней емкости с пониженной проницаемостью.

Второй продуктивный пласт (Н) в Березовсом районе залегает на 75-140 м выше первого, в нижней части отложений готерива - баррема и отделяется от нижнего пласта непроницаемой толщей глин и аргиллитов. Пласт Н газоносен на Деминской и Алясовских структурах. На других структурах он не выделяется (Игримская, Пархомская) или замещен глинистыми отложениями (Чуэльская структура). Наибольшая мощность продуктивного пласта зафиксирована на Алясовских структурах: на своде 26-28 м и на крыльях около 33 м. На Березовской и Деминской структурах пласт Н разделяется глинистыми прослоями на четыре пласта - коллектора мощностью каждый 1,5 - 6 м. Породы-коллекторы сложены алевролитами с пористостью 18 - 27 % и проницаемостью от 4 до 160 мд (Ансимов, Васильев, Ровнин и др., 1962). По данным Т.И. Гуровой, общая мощность песчаных прослоев в отложениях готерива - баррема составляет в районах Парабели, Нарыма, Ларьяка и Напаса 60 - 70 м, в Александрово - 100м, в Пудино - 121 м. Породы- коллекторы I класса отложений готерива-баррема развиты на большой площади, заключенной между реками Енисеем и Обью и несколько к западу от нее. Породы-коллекторы II и III классов приурочены к широкой зоне обрамления низменности с запада и юга. Коллекторы IV класса занимают зону справа от р. Иртыш (Татарск - Тара - Тобольск - Ханты-Мансийск). Площадь распространения коллекторов низших классов более ограничена, чем средних и высоких классов.

В Тазовско-Охтеурьевской газоносной зоне весьма перспективны на газ мезозойские отложения. На Тазовском газовом месторождении фонтан газа с глубины 2644 м с дебитом примерно 2- 2,5 млн.м 3 / сутки получен при бурении опорной скважины, заложенной на крупном антиклинальном поднятии длиной более 50 км. Продуктивными на газ являются песчаники готерив-барремского возраста. На Охтеурьевском месторождении (в северной части Александровского вала) с глубины 1809 м из песчаников баррема получен фонтан газа со свободным дебитом примерно 1,5- 2 млн. м 3 /сутки (Багирян, Васильев, Гришин, 1963).

Заключение

В настоящей работе кратко рассматривается лишь ограниченный круг вопросов, связанный с породами-коллекторами нефти и газа - основные свойства, петрографические признаки, некоторые классификации. Большое количество последних свидетельствует о разностороннем подходе к изучению коллекторов (петрографическом, генетическом, емкостно-фильтрационном и др.) и сложности самого объекта исследований.

Следует признать, что до сих пор не разработана систематика пород-коллекторов, основанная на анализе зависимостей между структурно-текстурными и фильтрационно-емкостными параметрами, не всегда удается достаточно надежно увязывать характер пористого пространства с определенными геологическими процессами и стадиями литогенеза.

Изложенные принципы типизации терригенных и карбонатных коллекторов и простейшие приемы их петрографического определения - это первый шаг в освоении сложного вопроса изучения и прогноза природных резервуаров нефти и газа.

Список использованной литературы

1) Ханин А.А. Основы учения о породах-коллекторах нефти и газа. - Москва: "Недра", 1965. - 360 с.

2) Котяхов Ф. И. Физика нефтяных и газовых коллекторов. - Москва: "Недра", 1977. - 287 с.

) Медведев Ю. А. Физика нефтяного и газового пласта: Курс лекций. - Тюмень: ТюмГНГУ, 2000 - 158 с.

) Киркинская В. Н., Смехов Е. М. Карбонатные породы - коллекторы нефти и газа. - Л.: "Недра", 1981. - 255 с.

Коллекторами нефти и газа называются породы, слагающие природные резервуары, способные вмещать подвижные вещества (воду, нефть, газ) и отдавать их в естественном источнике или в горной породе при разработке в данной термобарической и геохимической обстановках. В качестве коллекторов могут выступать все известные разновидности горных пород (в одном из месторождений Восточной Туркмении даже в толще соли содержится небольшое скопление газа).

Различают гранулярные (межзерновые), трещинные, кавернозные и биопустотные коллекторы. Часто встречаются промежуточные разности, особенно трещинно-кавернозные и гранулярно-трещинные.

Гранулярными являются в основном песчано-алевритовые породы и некоторые разности карбонатных – оолитовые, обломочные известняки, а также остаточные породы (дресва выветривания). Пустоты коллекторов представлены порами.

Трещинными коллекторами могут быть осадочные породы, изверженные и метаморфические. Трещины определяют, главным образом, проницаемость этих образований.

В качестве трещинных коллекторов среди осадочных пород чаще всего выступают карбонатные, но бывают и песчано-алевритовые и даже глинистые, которые ранее могли являться нефтегазопроизводящими. Кавернозные коллекторы чаще всего связаны с зонами выщелачивания с образованием пустот (каверн, пещер) в карбонатных и эвапоритовых толщах. В качестве основного процесса, образующего пустоты, чаще всего выступает карстообразование.

Биопустотные коллекторы связаны с органогенными карбонатными породами, пустоты носят внутрискелетный и межскелетный характер. Характеризуя породу-коллектор, необходимо, прежде всего, учитывать ее емкость, т.е. способность вмещать в себя определенный объем нефти и газа, и способность отдавать – пропускать через себя нефть и газ. Первое свойство контролируется пористостью пород, а второе – ее проницаемостью.

Пористость горных пород

Суммарный объем всех пустот в породе, включая поры, каверны, трещины, называют общей или абсолютной (теоретической) пористостью. Общая пористость измеряется коэффициентом пористости, представляющим собой отношение всего объема пор к объему породы в долях единицы или процентах. Часть пор в породе оказывается не связанной между собой. Такие изолированные поры не охватываются потоком флюида при разработке. Кроме того, изолированные поры могут быть заполнены водой или газом. Поэтому выделяют открытую пористость – отношение объема открытых пор к объему породы.

Открытая пористость всегда меньше теоретической. Некоторые каналы исключаются из процесса движения флюида и оказываются неэффективными ввиду их малого диаметра, величины смачиваемости стенок канала и т.д. Отношение объема эффективных пор к объему породы называется эффективной пористостью, которая выражается в долях единицы или процентах. Эффективная пористость всегда должна определяться по отношению к конкретному флюиду и к пластовым условиям. Ее определение возможно методами ГИС или специальными промысловыми исследованиями. Иногда используется понятие приведенной пористости, представляющей отношение объема пор к общему объему матрицы породы.

В природных условиях пористость песчано-алевритового коллектора зависит прежде всего от характера укладки зерен, от степени их отсортированности, окатанности, наличия, состава и качества цемента. Кроме того, пористость зависит от проявления и сохранения разного размера каверн и трещиноватости вследствие вторичных процессов − выщелачивания, перекристаллизации, доломитизации и др. Большое влияние на геометрию порового пространства оказывают структура и текстура пород-коллекторов. Под структурой пород понимаются внешние особенности зерен породы: их форма, характер поверхности зерен и т.д.; под текстурой − характер взаимного расположения зерен породы и их ориентация. В частности, слоистость является одним из важнейших и широко распространенных признаков текстуры.

Существенное влияние на взаимодействие пород-коллекторов с флюидом оказывает величина поверхности пор. В обломочных породах общая поверхность пор находится в обратной зависимости от размера частиц и характеризуется величиной удельной поверхности:

где f – коэффициент пористости; D – средний диаметр зерен, см.

Плотность осадочных горных пород определяется в пределах от 1,5 до 2,6 г/см3 и для обломочных образований находится в обратной зависимости от пористости.

Карбонатные породы, как уже отмечалось, часто являются коллекторами. Первичная пористость характерна для биогенных пород, обломочных известняков, онколитовых, сферолитово-сгустковых и оолитовых их разностей. Она существенно изменяется уже в диагенезе − когда происходит выщелачивание, перекристаллизация и доломитизация. Первый их этих процессов имеет определяющее значение для карстообразования. Карстообразование может начаться еще в зонах повышенной трещиноватости пород. Кавернозные известняки являются наиболее емкими коллекторами. К сожалению, часто образовавшиеся каверны заполняются кальцитом позднейшей генерации и другими новообразованиями. Процессы доломитизации могут увеличить емкость коллектора до 12%, а процессы сульфатизации и окремнения существенно ее снизить. В массивных известняках и доломитах основная емкость коллектора формируется, как правило, благодаря трещиноватости, достигая 2 − 3%.

Наиболее распространенным методом определения пористости является объемный метод, основанный на точной фиксации объема заполняющей поры жидкости.

Проницаемость горных пород. Под проницаемостью понимается способность пород пропускать через себя флюиды. Опытным путем было определено (Дарси), что скорость установившейся фильтрации пропорциональна перепаду давления:

где V – скорость фильтрации, м/с; m – динамическая вязкость, Па с; Δр – перепад давления на отрезке А1, Па/м; Кп – коэффициент проницаемости, м2. Величина проницаемости выражается через коэффициент проницаемости Кп, м2. Определение проницаемости горных пород, наряду с указанным характером размерности (Кп, м2), может выполняться также в Д (Дарси) и мД; при этом для перевода используется соотношение: 1Д = 10-15 м2.

Проницаемость зависит от размера пор, их взаимосообщаемости и конфигурации, размера зерен, плотности их укладки и взаимного расположения, отсортированности, цементации и трещиноватости. Величина коэффициента проницаемости не зависит от природы фильтрующейся жидкости через образец пористой среды и от времени фильтрации. Однако в процессе эксперимента наблюдаются и некоторые отклонения. Так, при фильтрации жидкостей в рыхлых коллекторах и наличии весьма мелких фракций песка возможна перегруппировка зерен породы (суффозия) и забивание поровых каналов мелкими частицами, изменяющими проницаемость среды. Частицы, находящиеся в нефти во взвешенном состоянии, при выпадении вызывают частичное закупоривание пор, снижая проницаемость.

В результате выделения смолистых веществ, содержащихся в сырой нефти, происходит отложение их на поверхности зерен породы-коллектора, что приводит к уменьшению поперечного сечения поровых каналов. При фильтрации воды в коллекторах, содержащих небольшой процент глинистого материала в составе песчаника, глины разбухают, что вызывает уменьшение сечения поровых каналов. При воздействии пластовых вод, особенно агрессивных, на кремнезем возможно образование коллоидального кремнезема в поровых каналах – это также ведет к их закупориванию. Из глинистых минералов, по данным Т.Т. Клубовой (1984), максимально снижают проницаемость пород минералы монтмориллонитовой группы. Примесь 2% монтмориллонита к крупнозернистому кварцевому песчанику снижает его проницаемость в 10 раз, а 5% монтмориллонита − в 30 раз. Этот же песчаник с примесью каолинита до 15% все еще сохраняет хорошую проницаемость (соответственно 150 и 100-110 мД).

Вопрос о связи между собой двух основных параметров коллекторов – пористости и проницаемости пор – достаточно сложен. Проницаемость наиболее тесно связана с размерами пор и их конфигурацией, в то время как общая пористость по существу не зависит от размера пор. Если в поровых коллекторах проницаемость пропорциональна квадрату диаметра пор, то в трещинных коллекторах она пропорциональна кубу раскрытости трещин. Проницаемость и пористость в зоне разрывных дислокаций зависят от условий и степени заполнения их при перекристаллизации и вторичной цементации.

Подавляющая часть коллекторов представлена породами осадочного происхождения, но встречаются среди них и другие типы. Так, например, на Шаимском месторождении в Западной Сибири нефть залегает в выветрелых гранитах эрезионного выступа фундамента. В месторождении Литтон-Спрингс в Техасе нефть залегает на контакте серпентинитов и вмещающих их известняков (рис. 22).

На Кубе нефть получают из серпентинитов. В месторождении Фибро в Мексике часть подземного резервуара образована изверженными породами основного состава. В Японии некоторые залежи газа связаны с туфами и лавами. Залегает нефть и в коре выветривания фундамента, сложенного изверженными и метаморфическими породами.

По данным, полученным в результате изучения свыше 300 крупнейших месторождений в мире, запасы нефти распределяются в коллекторах следующим образом: в песках и песчаниках – 57%; в известняках и доломитах – 42%; в трещиноватых глинистых сланцах, выветрелых метаморфических и изверженных породах – 1%.

Наибольшее количество залежей в разрезе осадочного чехла территории СССР приурочено к основным продуктивным пластам терригенного состава (меловые отложения Западной Сибири, карбон и девон Русской плиты). Из литолого-фациальных разновидностей среди терригенных пород в качестве нефтегазоносных наиболее часто встречаются нормальные морские мелкозернистые песчаники и алевролиты. Реже всего нефтегазоносность связана с конгломератами и породами частого флишевого переслаивания.

С карбонатными коллекторами в настоящее время связано меньше разведанных запасов нефти и газа, чем с терригенными. Отчасти это может быть объяснено недостаточной разведанностью карбонатных пород. Широкое развитие карбонатных коллекторов предполагается в пределах Восточно-Сибирской платформы.

Как следует из сказанного выше, глинистые толщи имеют весьма широкое распространение. Глины выполняют роль вмещающей среды или локальных покрышек, роль коллекторов − заключенные в них прослои или линзы песков, песчаников, карбонатных пород. Однако еще в начале XX столетия были получены притоки нефти и газа и непосредственно из глин в Калифорнии (США), затем в других районах мира и, наконец, из битуминозных глин баженовской свиты Западной Сибири. Как правило, глины, выполняющие роль коллектора, подверглись существенным изменениям в процессе литогенеза (в основном различных уровней эпигенеза), что идентифицируется нами с процессами катагенеза органического вещества.

Эти глинистые породы по существу занимают промежуточное положение между собственно глинами и глинистыми сланцами. По мнению Т.Т. Клубовой (1984), они преимущественно гидрослюдистые, содержат значительное количество рассеянного ОВ, окремнелые. Наличие жесткого каркаса из кремнекислоты и сорбированного глинистыми минералами ОВ, гидрофобизировавшего поверхность монтмориллонитов из частиц глинистых минералов, а значит и зоны контакта их друг с другом и с другими микрокомпонентами пород, обусловливают их промышленную емкость. Именно гидрофобизация зон контактов предопределила их достаточно легкое разъединение, а впоследствии и отдачу той нефти, которая в них заключалась (Т.Т. Клубова, 1984). Формированию емкостного пространства способствует также тектоническая активность.

Пористость коллекторов обусловлена наличием пор различного размера или трещин. Выделяются макропоры (>1 мм). Среди последних различают сверхкапиллярные размером от 1 до 0,5 мм, капиллярные – от 0,5 до 0,0002 мм и субкапиллярные поры размером <0,0002 мм. Породы, обладающие субкапиллярными порами, для нефти практически непроницаемы; к ним, в частности, относятся глины.

Изучение терригенных коллекторов, выполненное Г.Н. Перозио, Б.К. Прошляковым, П.А. Карповым, Е.Е. Карнюшиной, Р.Н. Петровой, И.М. Горбанец и др., показало тесную корреляционную зависимость между типом коллекторов и величиной открытой пористости, с одной стороны, и уровнем катагенетического преобразования их с глубиной, с другой. Определяющими при этом являются процессы уплотнения пород-коллекторов и трещиннообразование. Данные Б.К. Прошлякова по Прикаспийской впадине показывают, что соответствующее уплотнение и активное трещиннообразование происходит на глубине 3,5-4,0 км, а образующаяся при этом трещинная пористость составляет около половины всего объема пор, а трещинная проницаемость измеряется тысячами миллидарси. Наглядное представление о типах коллекторов в терригенных породах и влиянии катагенеза в процессе погружения их дает сводная таблица, составленная Е.Е. Карнюшиной (табл. 2).

Для сравнения, по данным И.М. Горбанец (1977), трещиннообразование в кварцевых и глауконито-кварцевых алевролитах верхнего эоцена Западно-Кубанского прогиба Скифской эпигерцинской плиты начинается с глубины около 4,0 км. В интервале разреза от 0,6 до 5,0 км выделяются следующие зоны распределения различных типов коллекторов: I тип (до 3,5 км) − поровые; II (3,5-4,5 км) − преобладание трещинно-поровых при наличии всех остальных типов; III (глубже 4,5 км) − трещинные.

Существует основная классификация пор, каналов и других пустот по размерам на основе различия основных сил, вызывающих движение флюидов. М.К. Калинко составил общую классификационную таблицу всех видов пустот в зависимости от их морфологии и размеров (табл. 3; пределы отклонения размеров указаны в каждом конкретном случае).

А.А. Ханин применяет иную, чем М.К. Калинко, градацию пор по размерам, выделяя макропоры крупнее 1 мм и микропоры меньшие, чем эта величина. Комплексное использование основных отмеченных выше параметров пород-коллекторов позволило предложить на базе рекомендаций А.А. Ханина и др. в качестве практической (промышленной) следующую классификацию коллекторов, различающихся по величине пористости и проницаемости. К коллекторам первого класса относятся коллекторы с эффективной пористостью свыше 26% и проницаемостью – свыше 1000 мД; второго класса – коллекторы с эффективной пористостью от 18 до 26% и проницаемостью – от 500 до 1000 мД; третьего − от 12 до 18% и проницаемостью – от 500 до 100 мД; четвертого − от 8 до 12% и от 100 до 10 мД; пятого класса − от 4,5 до 8% и от 10 до 1 мД. Породы-коллекторы, имеющие эффективную пористость менее 4,5% и проницаемость ниже 1 мД, промышленного значения не имеют, образуя коллекторы шестого класса. Наиболее полные классификации карбонатных коллекторов разработаны Е.М. Смеховым и др. (1962) и М.К. Калинко (1957). Обычно карбонатные коллекторы разделяются на три большие группы: межзерновые, межагрегатные и смешанные. Группа межзерновых коллекторов включает несколько типов в зависимости от состава вещества, заполняющего межзерновые пространства, и степени заполнения, а межагрегатных − две подгруппы: порово-каверновые и трещинные коллекторы; пористость последних не превышает, как правило, 1,7−2%.