Проектирование фундаментной плиты в сейсмике. Фундаменты в сейсмических районах. Ленточные фундаменты в сейсмических районах с перепадом высот строительной площадки. Схемы

В России существует 12 бальная сейсмическая шкала. До семи бальная сейсмичность воспринимается обычными зданиями, сооружениями без принятия каких-либо дополнительных мер по усилению несущих конструкций.

Расчетной является сейсмичность в 7, 8, 9 баллов.

При сейсмичности свыше 9 баллов строительство не рекомендуется и только в исключительных случаях возможно при разработке специальных мероприятий.

Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий.

Во многих районах выполнено микросейсмирование (повышение или понижение сейсмичности на 1 балл, которое санкционируется Госстроем).

Пример: Район с сейсмичностью 8 баллов.

При строительстве зданий необходимо:

  1. Фундаменты сооружения закладывать на одной отметке (более равномерное распределение сейсмических сил).
  2. Здание делить на отсеки.
  3. Фундаменты делать монолитными или омоноличивать (перекрестные ленты, сплошные фундаменты).
  4. Свайные фундаменты рассчитывать на горизонтальную нагрузку. При этом преимущество имеют сваи – стойки, а головы свай должны быть надежно заделаны в ростверк.

- коэффициент снижения несущей способности.

Расчёт фундаментов и оснований на сейсмические воздействия.

Расчёт оснований по несущей способности выполняется на действие вертикальной составляющей внецентренной нагрузки, передаваемой фундаментом

где вертикальная составляющая расчётной внецентренной нагрузки в особом сочетании; вертикальная составляющая силы предельного сопротивления основания при сейсмических воздействиях; сейсмический коэффициент условий работы; коэффициент надёжности по назначению сооружения.

Горизонтальная составляющая нагрузки учитывается при расчёте фундамента на сдвиг по подошве. Проверка на сдвиг по подошве производится с учётом трения подошвы фундамента о грунт, но с учётом сейсмического коэффициента условий работы

При расчёте несущей способности нескальных оснований, испытывающих сейсмические колебания, ординаты эпюры предельного давления по краям подошвы фундамента определяются по формуле:

где коэффициенты формы; коэффициенты несущей способности, зависящие от расчётного значения угла внутреннего трения; и соответственно расчётные значения удельного веса грунта, находящегося выше и ниже подошвы фундамента (с учётом взвешивающего действия подземных вод); глубина заложения фундаментов; коэффициент, принимаемый равным 0,1; 0,2; 0,4 при сейсмичности площадок строительства 7,8 и 9 баллов соответственно.

Эксцентриситеты расчётной нагрузки и эпюры предельного давления определяются по формулам

;

где вертикальная составляющая расчётной нагрузки и момент, приведённые к подошве фундамента при особом сочетании нагрузок. В зависимости от соотношения между величинами и вертикальная составляющая силы предельного сопротивления основания принимается:

где и размеры подошвы фундамента.

На подпорные стенки и стены подвальных помещений учитывают раздельно инерционное сейсмическое давление грунта и давление, вызванное изменением напряжённого состояния среды при прохождении в ней сейсмических волн.

Активное и пассивное давление грунта на подпорные стенки с учётом сейсмического воздействия

где коэффициент сейсмичности, принимаемый равным 0,025; 0,05; 0,1 соответственно при 7,8 и 9 баллах; угол внутреннего трения грунта при расчёте по устойчивости; соответственно активное и пассивное давления грунта при статическом состоянии.

Дополнительные горизонтальные нормальные и касательные напряжения, возникающие в грунте при прохождении сейсмических волн

где удельный вес грунта; скорости распространения продольных и поперечных сейсмических волн в грунте, определяемые экспериментально; преобладающий период сейсмических колебаний (обычно принимают с).

Сейсмические нагрузки прикладываемые к подпорной стенке как инерционные

где вес элемента сооружения, отнесённый к точке ; коэффициент, учитывающий допустимые повреждения зданий и сооружений; коэффициент, учитывающий конструктивные решения зданий и сооружений; – коэффициент демпфирования; коэффициент, зависящий от расчётной сейсмичности; коэффициент, соответствующий i -му тону собственных колебаний здания или сооружения; коэффициент, зависящий от формы деформации сооружения при его собственных колебаниях по i -му тону и от расстояния нагрузки до обреза фундамента.

Конструктивные особенности фундаментов.

Во избежание нарушения частоты собственных колебаний однородных конструкций фундаменты отдельного сооружения или отсека здания закладывают на одну и ту же глубину.

Для исключения подвижки здания по обрезу фундаментов гидроизоляцию стен выполняют из слоя цементного раствора. Применение битумной гидроизоляции не допускается.

Целесообразно колонны каркасных зданий располагать на сплошных фундаментных плитах, перекрёстных ленточных фундаментах или соединять фундамент и свайные ростверки вставками, которые исключают подвижку фундаментов относительно друг друга.

В сборных ленточных фундаментах под стены по их обрезу устраивают армированный пояс, работающий на растяжение.

В свайных фундаментах нижние концы свай опирают на плотные грунты. Непрерывный ростверк располагают на одной и той же глубине в каждом отдельном отсеке. Подпорные стенки не рекомендуется делать большой высоты.

Неблагоприятные грунты основания: пески рыхлые насыщенные водой, слабые пылевато-глинистые грунты в текучем и текучепластичном состоянии.

11. Проектирование гибких фундаментов. Общие сведенья. Основные теории расчета гибких фундаментов. Конструирование гибких фундаментов.

Гибкие сооружения, передавая нагрузку на основание, следуя за осадкой, которая может быть различна в каждой точке. При такой деформации в них не возникает практические никакие усилия разрушения. Такие сооружения имеют статически определенную схему. Гибкие могут быть фундаменты у которых отношение h/l<1/3.

Такими фундаментами являются:

1. Ленточные под колонны промышленных и гражданских зданий

2. Сплошные ж/б плиты высотного здания, элеваторов, АС.

3. Фундаменты из перекрестных лент

4. Коробчатые фундаменты

5. Кольцевые фундаменты дымовых труб

Выбор конструкции гибких фундаментов производится с учетом конструктивной схемы здания, величины и характера распределения нагрузок в плане, несущей способности и деформативности основания.

Ленточные фундаменты под колонну устраиваются в виде одинарных или перекрестных лент. Плитные фундаменты устраиваются под всем зданием, выполняются из монолитного ж/б класса В15. при глинистом основании необходима песчаная или гравийно-песчаная подсыпка под бетонную подготовку.

Армирование производят в двух зонах, как в верхней так и в нижней. Каждая зона должна иметь арматуру рабочую в двух направлениях (А3).

Наибольшее распространение в практике проектирования гибких фундаментов получили следующие методы:

1. Теория местных деформаций (Теория Винкнера)

2. Теория упругого полупространства

3. Теория упругого слоя, ограниченной толщины, на несжимаемом основании

4. теория упругого слоя с переменным модулем деформации основания по глубине

Сейсмическими называются районы, подверженные землетрясением.

Землетрясения - это колебания поверхности Земли. Они могут быть такими слабыми, что лишь детская колыбель слегка бы качнулась. Но бывают и настолько катастрофическими, что разрушают горы и стирают целые города с лица Земли. На самом деле колебания земли могут вызываться самыми различными причинами - от проезда тяжелой транспортной техники до извержения вулкана. Крупные землетрясения происходят при разрыве и перемещении горных пород в местах столкновения гигантских тектонических плит, из которых состоит земная кора.

К строительству зданий и сооружений в сейсмических районах предъявляются особые требования, изложенные в Нормах и правилах строительства в сейсмических районах.

Сейсмичность пункта строительства уточняется по картам сейсмического микрорайонирования. Сейсмическое микрорайонирование территорий строительства и населенных мест производится по материалам, характеризующим физико-механические свойства грунтов, геологические и гидрогеологические условия и рельеф местности.

Наиболее благоприятными в сейсмическом отношении грунтами являются невыветренные скальные и полускальные породы, а также плотные и маловлажные крупнообломочные грунты. Неблагоприятными грунтами являются насыщенные водой гравийные, песчаные и глинистые (макропористые), а также пластичные, текучие глинистые (не макропористые) грунты.

К неблагоприятным в сейсмическом отношении условиям строительной площадки относятся: сильно расчлененный рельеф местности (обрывистые берега, овраги, ущелья и др.); выветренность и сильная нарушенность пород физико-геологическими процессами; близкое расположение линий тектонических разрывов.

При необходимости строительства зданий и сооружений в районах оползней, осыпей, обвалов, плывунов, горных выработок и т. п. должны быть осуществлены мероприятия по обеспечению сейсмостойкости зданий и сооружений согласно, особым, проектам по инженерной подготовке площадки. Во всех случаях не следует допускать расположения строительных площадок в местах, затопляемых, заболоченных, с высоким уровнем грунтовых вод, в зонах насыпных грунтов, оползней, карстов, осыпей, обвалов и селевых потоков.

В СНиПе основные типы грунтов с точки зрения их сейсмоустойчивости делят на три категории. К первой категории относят скальные и полускальные, а также особо плотные крупноблочные породы при глубине уровня грунтовых вод не менее 15 м; ко второй категории - глины и суглинки, пески и супеси при толщине слоя менее 8 м, а также крупнообломочные грунты при толщине слоя 6-10 м; к третьей категории – глины и суглинки, пески и супеси при толщине слоя менее 4 м, а также крупнообломочные грунты при толщине слоя менее 3м.

При строительстве на грунтах первой категории расчетную-сейсмичность района строительства, определенную по картам, можно снизить на 1 балл. Грунты второй категории соответствуют нормативной балльности сейсмики, определяемой по картам. При грунтах третьей категории 6 и 7-балльную сейсмичность нужно повысить на 1 балл, а при 9-балльной нормативной сейсмичности рекомендуется подобрать другую строительную площадку с меньшей сейсмичностью.

При проектировании зданий и сооружений, предназначенных для строительства в сейсмических районах, следует применять конструктивные решения, позволяющие до минимума снижать сейсмические нагрузки. Поэтому рекомендуют применять симметричные конструктивные схемы, легкие ограждающие конструкции и такие несущие относительно обеих осей здания в плане конструкции, которые обеспечивают развитие пластических деформаций в элементах и стыках.

При проектировании здании и сооружений, возводимых в сейсмических районах, кроме расчета конструкций на обычные нагрузки (собственный вес, временные и другие нагрузки) проводятся расчеты на воздействие сейсмических сил, которые условно принимают действующими горизонтально. Сила землетрясения устанавливается по, 12-балльной шкале.

При проектировании особо ответственных здании и сооружений значения определенную обычным способом 6 и 7-балльную сейсмостойкость переводят в 8 и 9-балльную, а при 9-балльной нормативной сейсмичности расчетные сейсмические нагрузки умножают на дополнительный коэффициент 1,5.

Здания должны иметь простую форму плана (квадрат, прямоугольник, круг и т. п.). Здание сложной формы должно быть разделено на отсеки простой формы (рис.4.1). В каждом отсеке необходимо соблюдать жесткость и симметричность расположения несущих вертикальных конструкций. Предельные размеры зданий (отсеков) с разными типами несущего остова приведены в табл.4.1

Таблица 4.1
Предельные размеры зданий

Несущие конструкции зданий Размеры по длине (ширине), м Высота, м (число этажей)
7 8 9 7 8 9
1.Металлический или железобетонный каркас или стены железобетонные монолитные По требованиям для несейсмических районов, но не более 150м. По требованиям для несейсмических районов
2.Стены крупнопанельные 80 80 60 45(14) 39(12) 39(9)
3.Стены комплексной конструкции (железобетонные включения и железобетонные пояса образуют легкую каркасную систему 80 80 60 23-30
(7-9)
20-23
(6-7)
14-17
(4-5)
4.Тоже, но не образуют четкий каркас 80 80 60 17-20
(5-6)
14-17
(4-5)
11-14
(3-4)
5.Стены из вибрированных кирпичных панелей или блоков 80 80 60 23 (7) 20(6) 14(4)
6.Стены из кирпичной или каменной кладки 80 80 60 14-17
(4-5)
11-14
(3-4)
8-11
(2-3)

Антисейсмические швы

Антисейсмические швы (из парных стен или колонн) должны разделять здание на отсеки по всей его высоте. Ширину шва при высоте здания до 5 м принимают 30 мм. На каждые следующие 5 м высоты здания ширину антисейсмических швов увеличивают на 20 мм.

Рисунок 4.1 Схемы расположения несущих стен в зданиях, возводимых в сейсмических районах: а- неправильное расположение (входящие углы 1-4 подвергаются разрушению); б – правильное расположение стен (образующие замкнутые сейсмостойкие отсеки 5,6,7; 8 – антисейсмический шов); в- рекомендуемое симметричное расположение поперечных стен; г- нерекомендуемое несимметричное расположение поперечных стен; д- нерекомендуемое расположение стен зданий (сейсмические силы будут стремиться разрушить примыкающие стены).

Фундаменты здания

При строительстве в сейсмических районах глубину заложения фундаментов назначают не менее 1 м, причем грунты III категории требуют искусственного улучшения. Фундаменты зданий и их отдельных отсеков следует закладывать на одной глубине, а в зданиях повышенной этажности нужно предусматривать дополнительное заглубление фундаментов.

При прохождении сейсмических волн фундаменты зданий и сооружений могут испытывать подвижку относительно друг друга, поэтому рекомендуется возводить сплошные плитные фундаменты или фундаменты из перекрестных лент (рис.4.2, в) в монолитном или сборном варианте. Для усиления сборных фундаментов обязательно устраиваются перевязка блоков в узлах и укладка дополнительных арматурных сеток. В каркасных зданиях допускается применение отдельных фундаментов, которые должны раскрепляться железобетонными вставками(рис.4.2, б).

Рисунок 4.2 Конструкции фундаментов в сейсмически oпасных paйонax а - из перекрестных лент; б - закрепление отдельно стоящих фундаментов железобетонными вставками; 1 - сварные сетки; 2 – связевые вставки.

Применение свайных фундаментов требует жесткой заделки свай в непрерывные ростверки, располагающиеся в одном уровне, причем следует опирать нижние концы свай на более плотные слои грунтов оснований. Следует отметить, что устойчивость оснований и фундаментов в сейсмически опасных районax гарантирует нормальную эксплуатацию здания только в том случае, если и вся надземная часть здания возведена с учетов сейсмических воздействий.

При свайных фундаментах следует применять забивные сваи, а не набивные. Набивные сваи без оболочек не применяют. Ростверк свайного фундамента должен быть заглублен в грунт. Для многоэтажных каркасных зданий применяют фундаменты виде перекрестных лент или сплошной плиты.

Особенности конструирования каркасных зданий

В каркасных зданиях горизонтальную сейсмическую нагрузку воспринимают каркас с жесткими узлами рам, каркас с заполнением, каркас с вертикальными связями, диафрагмами или стволами жесткости. При расчетной сейсмичности 7... 8 баллов допускают применять наружные каменные стены высотой не более 7 м.

Диафрагмы, связи и ядра жесткости должны быть непрерывными по всей высоте здания и расположены в обоих направлениях равномерно и симметрично относительно центра тяжести здания. При выборе конструктивных схем следует предусмотреть возникновение первых пластических зон в горизонтальных элементах каркаса (ригелях, перемычках и обвязочных балках).

По способу изготовления и возведения железобетонные каркасы зданий могут быть сборными, сборно-монолитными и монолитными. Жесткие узлы железобетонных рам должны быть усилены применением сварных сеток и замкнутых хомутов (рис.4.3)

Участки ригелей колонн, примыкающие к жестким узлам рам на расстоянии, равном не менее высоты их сечения, усиливают дополнительной замкнутой поперечной арматурой (хомутами) с шагом не более 100мм в рамных системах и не более 200мм в связевых системах. При расчетной сейсмичности 8 и 9 балла в шаг хомутов в колоннах рам не должен превышать b/2 где, b – наименьший размер сечения колонны. Диаметр хомутов следует принимать не менее 8мм.

В сборно-монолитном каркасе колонны и плиты перекрытий объединяют в единую конструкцию путем натяжения на бетон канатной арматуры. Ее пропускают через отверстия колонн в зазорах между крупноразмерными панелями перекрытия.

Сборные колонны многоэтажных зданий по возможности следует укрупнять на несколько этажей. Стыки колонн необходимо располагать в зонах с минимальным изгибающими моментами.

Рисунок 4.3 Сейсмоконструирование узлов. а, б - армирование узла сборной и монолитной железобетонной рамы: в - конструктивное решение стыковых соединений панелей внутренних стен крупнопанельных зданий; г- анкеровка панелей перекрытий 1 – продольная арматура; 2 - то же, поперечная; 3 - усиленный арматурный выпуск; 4- опорный столик из уголков с отверстием; 5- дополнительная продольная арматура; 6 - поперечная арматура

Особенности конструирования крупнопанельных и объемно-блочных зданий

Для зданий сейсмических районов рекомендуют принимать конструктивную схему с несущими поперечными и продольными стенами. Панели стен и перекрытий соединяют путем сварки выпусков арматуры, анкерных стержней и закладных деталей. Таким образом все элементы зданий объединяют в единую пространственную конструкцию, способную воспринимать сейсмические нагрузки. Несущую способность зданий повышают путем применения вертикальной напрягаемой арматуры.

Фундаменты применяют ленточные из монолитного железобетона. При больших нагрузках и слабых грунтах может оказаться рациональным фундамент в виде сплошной монолитной плиты.

Стеновые панели армируют пространственными каркасами. Пример конструктивного решения внутренней стеновой панели и ее стыков показан на рис.108в. Стены по всей длине и ширине здания должны быть, как правило, непрерывными.

Благодаря большой пространственной жесткости и способности перераспределять усилия, объемно-блочные здания вполне подходят для строительства в сейсмических районах. При строительстве блоки размерами на всю комнату соединяют по высоте только по углам. Однако по всем граням блоков устанавливают вертикальную арматуру. Для повышения жесткости горизонтальных стыков блоков целесообразно устраивать шпоночные связи.

Для снижения сейсмических нагрузок устраивают в зданиях так называемый первый гибкий этаж, т. е. первый этаж многоэтажных зданий выполняют каркасным. Последнее время такое решение подвергается к жесткой критике.

Особенности конструирования каменных зданий

В зданиях с несущими стенами из кирпича или каменной кладки, кроме наружных продольных стен, должно быть не менее одной внутренней продольной стены. При этом соблюдают требования по минимальной ширине простенков и максимальной ширине проемов.

Сейсмостойкость каменных стен зданий повышают арматурными сетками, вертикальными железобетонными элементами (сердечниками), предварительным напряжением кладки. В уровне перекрытий и покрытий зданий устраивают антисейсмические железобетонные пояса по всем продольным и поперечным стенам. Связь поясов с кладкой может быть усилена выпусками арматуры и железобетонными анкерами.

Антисейсмические пояса устраивают на всю ширину стены. Высота поясов должна быть не менее 150 мм. Их возводят из бетона класса не ниже B12, 5 и армируют четырьмя продольными стержнями диаметром 10 и 12 мм при расчетной сейсмичности соответственно 7, 8 и 9 баллов. Кроме того, армируют горизонтальной арматурой все угловые участки наружных стен и сопряжения внутренних стен к наружным. Аналогичное армирование применяют для стен из монолитного бетона.

Проемы большой ширины и узкие простенки окаймляют
железобетонной рамкой (рис.4.4). Перемычки устраивают, как
правило, на всю толщину стены и заделывают в кладку на
глубину не менее 350 мм (при ширине проема до 1,5м – не менее 250 мм).

Рисунок 4.4 Усиление граней оконных (а) и дверных (б) проемов: 1 - железобетонный сердечник; 2 - железобетонная перемычка, объединенная с обвязкой; 3 -железобетонная обвязка

Первые этажи зданий, включающие магазины и другие помещения свободной планировки (с колоннами), выполняют в железобетоне.

Здания с пролетами 18 м и более следует перекрывать металлическими фермами в сочетании с алюминиевыми панелями или профилированным стальным настилом, утепленным пенополистиролом или другими эффективными легкими материалами. Предварительно напряженные железобетонные конструкции, в которых арматура не имеет сцепления с бетоном, применять не разрешается.

Лестницы рекомендуется применять крупносборные с заделкой в кладку не менее чем на 250 мм, с анкерованием или с надежными сварными креплениями. Консольная заделка ступеней не допускается. Дверные и оконные проемы при сейсмичности 8 и 9 баллов должен иметь железобетонное обрамление.

Перегородки следует применять крупнопанельные или каркасной конструкции, причем они должны быть надежно связаны с перекрытиями и стенами или колоннами. Балконы должны выполняться в виде консольных выпусков панелей перекрытий (или надежно с ними соединяться). Вынос балконов допускается при сейсмичности 7 баллов 1,5 м, а при сейсмичности 8-9 баллов 1,25 м. Отделку помещений следует производить с использованием легких листовых материалов (сухой штукатурки, фанеры, древесноволокнистых плит и т. п.).

Покрытия одноэтажных зданий для строительства в сейсмических районах следует принимать сборно-монолитной конструкции. Многопролетные стропильные покрытия, как и многоволновые оболочки для сейсмических районов, целесообразно проектировать неразрезными с целью повышениях их жесткости и устойчивости.

Строительство жилых домов из сырцового кирпича, самана и грунтоблоков допускают лишь в сельских населенных пунктах при условии усиления стен деревянным каркасом с диагональными связями.

Факторы, влияющие на интенсивность воздействия колебаний на здание:

· геологические и гидрогеологические условия

· глубина очага и эпицентра

· частота сейсмических колебаний и самих зданий

· конструктивные особенности здания

Расчетной является сейсмичность в 7, 8 ,9 баллов. Строительство в районах с сейсмичностью в 10 и более баллов не производится.

Расчетная сейсмичность выше при высоком УГВ и в случае пересеченной местности, а где скальные породы, понижается на 1 балл.

Наиболее существенно влияние сейсмичности в насыпных грунтах, в водонасыщенных мелких и пылеватых песках, лессовых просадочных грунтах.

Конструктивные решения:

· фундаментные сооружения закладываются на одной отметке

· здание делится на осеки, разделяемыесейсмошвами

· отсеки должны быть равноэтажными

· монолитное домостроение

· применение монолитных фундаментов

· гибкое сопряжение свай и фундаментов

· устройство демпфирующих прокладок между фундаментами и конструкциями

· применение гасителей колебаний маятникового типа

При строительстве в сейсмоопасных зонах применяются общие мероприятия повышения жесткости сооружения в целом.

1. Основные принципы проектирования оснований и фундаментов. Исходные данные к проектированию.

2. Состав работ при проведении инженерно- геологических изысканий в строительстве. Методы определение характеристик физического состояния грунтов в лабораторных и полевых условиях.

3. Методы определения прочностных и деформационных характеристик грунтов в лабораторных и полевых условиях.

4. Предельные состоянияI и II группы.

5. Классификация фундаментов. Плитные фундаменты мелкого заложения.

6. Определение глубины заложения плитных фундаментов мелкого заложения.

7. Определение размеров плитной части фундаментов. Расчетное сопротивление грунтов.

8. Определение осадки плитных фундаментов мелкого заложения методом послойного суммирования.

9. Конструкции на упругом основании.

10. Существующие типы свайных ростверков. Виды свай по характеру передачи нагрузки на основание. Виды свай по способу изготовления.

11. Сваи, погружаемые в грунт. Классификация свай по форме поперечного и продольного сечения. Методы погружения свай.

12. Сваи, изготавливаемые в грунте. Методы бурения скважин, методы крепления стенок скважин, методы уплотнения забоя скважин.

13. Последовательность устройства буронабивных свай. Устройство буронабивных свай с уширением. Вибропогружная технология и технология полого шнека при устройстве свай.

14. Методы определения несущей способности одиночной сваи. Определения несущей способности свай, защемленных в грунте, расчетным (табличным) методом.

15. Определение несущей способности сваи по данным статического и динамического зондирования грунтов.

16. Определение несущей способности свай динамическим методом и по данным испытания статической нагрузкой.

17. Определение количества свай в ростверке. Конструирование ростверка. Проверка несущей способности наиболее нагруженной сваи в ростверке.

18. Определение границ условного фундамента. Определение осадки свайных фундаментов методом послойного суммирования.

19. Оболочки, столбы набивные. Траншейные стены, возводимые способом "Стена в грунте". Конструктивные особенности, область применения, технология погружения.

20. Опускные колодцы.

21. Конструктивные методы упрочнения грунтов. Устройство грунтовых подушек. Армирование грунтов (методы армирования грунтов, область применения, применяемые материалы).

22. Уплотнение грунтов. Поверхностное уплотнение грунтов. Глубинное уплотнение.

23. Уплотнение грунтов статической нагрузкой с устройством вертикальных дрен. Уплотнение грунтов водопонижением.

24. Закрепление грунтов. Цементация, силикатизация грунтов, электрохимическое закреплениегрунтов.

25. Фундаменты в особых условиях. Какие условия строительства относятся к особым. Конструктивные мероприятия снижения чувствительности здания к неравномерным осадкам.

26. Особенности проектирования оснований и фундаментов в просадочных грунтах.

27. Особенности проектирования оснований и фундаментов в слабых водонасыщенных грунтах, пучинистых грунтах и торфах.

28. Особенности проектирования фундаментов в вечномерзлых грунтах (I и II принцип проектирования).

29. Особенности проектирования фундаментов при динамических воздействиях.

30. Особенности проектирования фундаментов в сейсмоопасных зонах.

  • 4. Укажите максимальные перепады различных частей здания, при которых допускается не учитывать сейсмические швы.
  • 5. Каковы особенности размещения вертикальных конструкций в месте устройства антисейсмического шва
  • 6. Классификация грунтов по сейсмическим свойствам
  • 7. Требования к материалу, заполняющему антисейсмический шов.
  • 8. На какие сочетания нагрузок необходимо выполнять расчет конструкций и оснований зданий и сооружений, проектируемых для строительства в сейсмических районах?
  • 9. Из каких условий назначают предварительную ширину шва?
  • 10. Какое основное правило проектирования жбк в сейсмических районах
  • 11. Каковы значения коэффициентов сочетаний нагрузок?
  • 12. Обязательно ли разделять антисейсмическим швом фундамент?
  • 13. Какие нагрузки не учитываются при расчете конструкций на особое сочетание?
  • 14. Какие направления сейсмических воздейств. В пространстве необходимо учитывать при расчете зданий и сооруж.
  • 15. Требования предъявляемые к сооружению лестничных клеток.
  • 16. Требования предъявляемые к конструкции лестничных клеток.
  • 17. Какими конструктивными мерами обеспечивают сдвиговую жесткость сборных железобетонных перекрытий?
  • 18. По какой прочностной характеристике классифицируют каменную кладку
  • 19 . Какие конструктивные меры выполняют при возведений кирпичных столбов?
  • 20. Какие особенности устройства анисейсмического пояса на последнем этаже здания.
  • 21. Укажите минимальную длину площадки опирания панелей перекрытия на Кир., монол., сбор. Жб конструк.
  • 22. Какие требования предъявляются к перегородкам зданий в сейсмических районах.
  • 23. Где устраивают антисейсмические пояса
  • 24. Схема сопряжения сборных лестничного марша и площадки в сейсмических районах
  • 32. Схема устройства узлов опирания сборных плит перекрытий на наружные несущие стены в сейсмических районах.
  • 40. Стыки продольной арматуры колонн в сейсмических районах. Схема.
  • 41. Особенности устройства ленточных фундаментов в сейсмических районах. Схема.
  • 42. Ленточные фундаменты в сейсмических районах с перепадом высот строительной площадки. Схемы.
  • 43. Сборные ленточные фундаменты в сейсмических районах. Особенности конструктивных мероприятий обусловленных сейсмоопасностью.
  • 44. Гидроизоляция в сейсмичекских районах.
  • 45. Особенности устройства свайных фундаментов в сейсмических районах. Схемы.
  • 46. Особенности устройства отдельно-стоящих фундаментов в сейсмических районах. Схемы.
  • 47. Классификация зданий из камней и блоков пильного известняка для сейсмических районов.
  • 56. Особенности проектирования каркасно-блочных зданий в сейсмических районах. Схема устройства стоек в крестообразных пересечениях стен.
  • 57. Особенности проектирования каркасно-блочных зданий в сейсмических районах. Схемы повышения устойчивости стен с проемами.
  • 58. Исторические сведения о строительстве зданий с активной сейсмозащитой.
  • 59. Классификация систем активной сейсмозащиты зданий. Преимущества и недостатки.
  • 60. Активная сейсмозащита зданий. Системы с гибкой нижней частью. Схема.
  • 61. Активная сейсмозащита зданий. Системы с кинематическими опорами. Схема.
  • 62. Активная сейсмозащита зданий. Системы с подвесными опорами. Схема.
  • 63. Активная сейсмозащита зданий. Система со скользящими опорами. Схема.
  • 64. Активная сейсмозащита зданий. Системы с выключающимися связями. Схема.
  • 65. Активная сейсмозащита зданий. Системы с включающимися связями. Схема.
  • 41. Особенности устройства ленточных фундаментов в сейсмических районах. Схема.

    Проектирование фундаментов зданий следует выполнять в соответствии с требованиями нормативных документов по основаниям зданий и сооружений и свайным фундаментам.

    Фундаменты зданий, возводимых на нескальных грунтах, должны, как правило, устраиваться на одном уровне. Подвальные этажи следует предусматривать под всем зданием. При расчетной сейсмичности 7 и 8 баллов допускается устройство подвала под частью здания. При этом следует располагать его симметрично относительно главных осей здания.

    Для зданий выше 12 этажей устройство подвала под всем зданием обязательно.

    При строительстве на нескальных грунтах по верху сборных ленточных фундаментов следует укладывать слой раствора марки 100 толщиной не менее 40 мм и продольную арматуру диаметром 10 мм в количестве три и четыре стержня при сейсмичности 7 и 8 баллов соответст­венно. Продольные стержни должны быть соединены поперечными с шагом 300-400 мм. В случае выполнения стен подвала из сборных панелей или монолитными, конструктивно связанными с ленточными фундаментами, укладка армированного слоя раствора не требуется.

    В районах сейсмичностью 9 баллов ленточные фундаменты должны выполняться, как правило, монолитными.

    В зданиях при расчетной сейсмичности 9 баллов стены подвалов должны предусматриваться, как правило, монолитными или сборно-монолитными.

    42. Ленточные фундаменты в сейсмических районах с перепадом высот строительной площадки. Схемы.

    43. Сборные ленточные фундаменты в сейсмических районах. Особенности конструктивных мероприятий обусловленных сейсмоопасностью.

    При строительстве на нескальных грунтах по верху сборных ленточных фундаментов следует укладывать слой раствора марки 100 толщиной не менее 40 мм и продольную арматуру диаметром 10 мм в количестве три и четыре стержня при сейсмичности 7 и 8 баллов соответственно. Продольные стержни должны быть соединены поперечными стержнями с шагом 300-400 мм. В случае выполнения стен подвала из сборных панелей или монолитными, конструктивно связанными с ленточными фундаментами, укладка армированного слоя раствора не требуется.В районах сейсмичностью 9 баллов ленточные фундаменты должны выполняться, как правило, монолитными.В фундаментах и стенах подвала из крупных блоков должна быть обеспечена перевязка кладки в каждом ряду, а также во всех углах и пересечениях на глубину не менее 1/3 высоты блока; фундаментные блоки следует укладывать в виде непрерывной ленты. Для заполнения швов между блоками следует применять раствор марки не ниже 50.В каждом ряду блоков в местах углов, примыканий и пересечений устанавливать арматурные сетки с заведением их на 70 см от мест пересечения стен.

    При прохождении сейсмических волн фундаменты зданий и сооружений могут испытывать подвижку относительно друг друга, поэтому рекомендуется возводить сплошные плитные фундаменты или фундаменты из перекрестных лент (рис.4.2, в) в монолитном или сборном варианте. Для усиления сборных фундаментов обязательно устраиваются перевязка блоков в узлах и укладка дополнительных арматурных сеток. В каркасных зданиях допускается применение отдельных фундаментов, которые должны раскрепляться железобетонными вставками(рис.4.2, б).

    Рисунок 4.2 Конструкции фундаментов в сейсмически oпасных paйонax а - из перекрестных лент; б - закрепление отдельно стоящих фундаментов железобетонными вставками; 1 - сварные сетки; 2 – жирный цементно песчаный раствор.

    В статье рассказывается об особенностях строительства фундаментов в сейсмических районах, какие требования предъявляются к свайным фундаментам в зонах сейсмического воздействия.

    Сейсмические районы – это зоны, в которых продолжаются горообразовательные процессы. С инженерной точки зрения это районы с силой землетрясения 6 баллов и выше.

    Каждая точка земли в таком районе испытывает последовательное воздействие волн разного вида, поэтому колебания грунта при землетрясениях носят сложный пространственный характер. Из-за этого сейсмические силы могут иметь любое направление, быть переменными по скорости и величине.

    Здания и сооружения, расположенные в сейсмических районах, подвергаются воздействию особых факторов, которые приводят к появлению дополнительных усилий в конструкциях и изменению условий их работы. Поэтому для обеспечения их надежности при проектировании и строительстве нужно учитывать силу землетрясения, которую обычно оценивают по общему разрушительному эффекту. Это касается как надземных построек, так и фундаментов.

    Расчет фундаментов в сейсмических районах

    Фундаментные конструкции и их основания рассчитываются на основное и особое сочетание нагрузок. В последнее обязательно включается сейсмическая нагрузка, которую получают при динамическом расчете всего здания на колебания и прикладывают в точках расположения масс элементов конструкций.

    Динамический расчет учитывает:

      массу отдельных элементов здания;

      сейсмичность района;

      формы собственных колебаний;

      особенности колебания сооружения;

      тип грунта;

      конструктивное решение сооружения;

      характер допустимых повреждений и дефектов.

    Когда сейсмические нагрузки получены, выполняется статический расчет конструкций здания в предположении совместного действия сейсмической и статической нагрузки.

    Отдельные категории грунтов требуют предварительного искусственного улучшения до начала строительства. Так, водонасыщенные пески разжижаются во время землетрясения и влекут провальную осадку зданий, поэтому их нужно предварительно уплотнять вибрированием).

    Глубина заложения фундамента увеличивается для зданий повышенной этажности (строительство дополнительных подземных этажей).

    Из-за растяжения и сжатия грунтов во время землетрясения части фундаментных конструкций могут смещаться относительно друг друга, потому в случае с бетоном рекомендуется строительство сплошных плитных фундаментов или непрерывных фундаментов из перекрестных лент. Для свайных фундаментов, подвергающихся аналогичному воздействию, в СП 24.13330.2011 также предусмотрен ряд рекомендаций.

    Свайные фундаменты в условиях сейсмического воздействия

    При проектировании свайных фундаментов (в том числе из винтовых свай), запланированных к эксплуатации в условиях сейсмического воздействия, необходимо учитывать требования раздела 12 «Особенности проектирования свайных фундаментов в сейсмических районах» СП 24.13330.2011 «Свайные фундаменты» к сейсмостойкому строительству.

    Согласно нормативному документу:

      заглубление свай при строительстве в подобных районах должно быть не менее 4 м.

      ростверк под несущими стенами здания в пределах одного отсека должен быть непрерывным и расположен в одном уровне;

      верхние концы свай должны быть жестко заделаны в ростверк.

    Устройство безростверковых свайных оснований недопустимо.

    Влияние сейсмических воздействий на работу свайных фундаментов учитывают с помощью понижающих коэффициентов условий работы.

    Такие конструкции демонстрируют лучшее восприятие всех типов воздействий, благодаря рассчитанным на основании данных о грунтах расстоянию между лопастями, конфигурации, шагу и углу наклона лопастей. Моделирование винтовой сваи выполняется в системах автоматизированного проектирования, которые базируются на методе конечных элементов (МКЭ).