Методические разделы исследования операций в экономике. В том числе аудиторных. Задача о распределении средств между предприятиями

1. Предмет и задачи исследования операций в экономике. Основные понятия теории исследования операций.

Предмет исследования операций - системы организационного управления или организации, которые состоят из большого числа взаимодействующих между собой подразделений не всегда согласующихся между собой и могут быть противоположны.

Цель исследования операций - количественное обоснование принимаемых решений по управлению организациями

Решение, которое оказывается наиболее выгодным для всей организации называется оптимальным, а решение наиболее выгодное одному или нескольким подразделениям будет субоптимальным.

Исследование операций - наука, занимающаяся разработкой и практическим применением методов наиболее оптимального управления организационными системами.

Операцией называется всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.

Цель исследования операций - предварительное количественное обоснование оптимальных решений.

Всякий определенный выбор зависящих от нас параметров называется решением. Оптимальным называются решения, по тем или другим признакам предпочтительные перед другими.

Параметры, совокупность которых образует решение, называются элементами решения.

Множеством допустимых решений называются заданные условия, которые фиксированы и не могут быть нарушены.

Показатель эффективности - количественная мера, позволяющая сравнивать разные решения по эффективности.

2. Понятие о сетевом планировании и управлении. Сетевая модель процесса и ее элементы.

Метод работы с сетевыми графиками – сетевое планирование – базируется на теории графов. В переводе с греческого граф (grafpho – пишу) представляет систему точек, некоторые из них соединены линиями – дугами (или ребрами). Это топологическая (математическая) модель взаимодействующих систем. С помощью графов можно решать не только задачи сетевого планирования, но и другие задачи. Метод сетевого планирования применяется при планировании проведения комплекса взаимосвязанных работ. Он позволяет наглядно представить организационно-технологическую последовательность выполнения работ и установить взаимосвязь между ними. Кроме этого, он позволяет обеспечить координацию операций различной степени сложности и выявить операции, от которых зависит продолжительность всей работы (т.е. организационного мероприятия), а также сосредоточить внимание на своевременном выполнении каждой операции.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

Событие, работа, путь.

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени.

Путь - это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины.

Продолжительность пути определяется суммой продолжительностей составляющих его работ.

3. Построение и упорядочивание сетевого графика.

В качестве модели, отражающей технологические и организационные взаимосвязи процесса производства строительно-монтажных работ в системах сетевого планирования и управления (СПУ), используется сетевая модель.

Сетевой моделью называется графическое изображение процессов, выполнение которых приводит к достижению одной или нескольких поставленных целей, с указанием установленных взаимосвязей между этими процессами. Сетевой график представляет собой сетевую модель с расчетными временными параметрами.

Структура сетевого графика, определяющая взаимную зависимость работ и событий, называется его топологией.

Работа - это производственный процесс, требующий затрат времени, труда и материальных ресурсов, который при его выполнении приводит к достижению определенных результатов.

Зависимость (фиктивная работа), не требующая затрат времени изображается пунктирной стрелкой. Фиктивная работа используется в сетевом графике для отражения связей между событиями и работами.

В сетевом графике применяются временные, стоимостные и другие характеристики работ.

Продолжительной работы – время выполнения данной работы в рабочих днях или других единицах времени, одинаковых для всех работ сетевого графика. Продолжительность работ может быть как определенной (детерминированной), так и случайной величиной, задаваемой законом ее распределения.

Стоимость работы – это прямые затраты, необходимые для ее выполнения, зависящие от длительности и условий выполнения этой работы.

Ресурсы характеризуются потребностью в физических единицах, необходимых для выполнения данной работы.

Качество, надежность и другие показатели работ служат дополнительными характеристиками работ.

Событие - это факт окончания одной или нескольких работ, необходимый и достаточный для начала одной или нескольких последующих работ. Каждому событию присваивается номер, называемый кодом. Каждая работа определяется двумя событиями: кодом начального события, обозначаемого i и кодом конечного события, обозначаемого буквой j.

События, не имеющие предшествующих работ, называются начальными; события, не имеющие последующих – конечными.

1 Направление построения сети может иметь различный характер. Сетевой график может строиться от начального события к завершающему и от завершающего к исходному (начальному), а также от любого из событий к исходному или конечному.

2 При построении сети решаются вопросы:

Какие работы (работу) необходимо выполнить, чтобы начать данную работу;

Какие работы целесообразно выполнять параллельно с данной работой;

3 Первоначальный сетевой график строится без учета продолжительности работ, составляющих сеть.

4 Форма графика должна быть простой и зрительно легко воспринимаемой.

5 Между двумя событиями может заключаться только одна работа. При строительстве зданий и сооружений работы могут выполняться последовательно, параллельно или одновременно, часть последовательно, а часть параллельно, в результате чего между отдельными работами складываются различные зависимости.

Нумерация (кодирование) событий производится после окончания построения сети, начиная от исходного события до конечного.

4. Критический путь сетевого графика. Резервы времени. Ранние и поздние сроки событий и работ в сетевом графике.

В сетевом графике между начальным и конечным событиями может быть несколько путей. Путь, имеющий наибольшую продолжительность, называется критическим. Критический путь определяет общую продолжительность работ. Все остальные пути имеют меньшую продолжительность, и поэтому в них выполняемое работы имеют резервы времени.

Критический путь обозначается на сетевом графике утолщенными или двойными линиями (стрелками).

Особое значение при составлении сетевого графика имеют два понятия:

Раннее начало работы - срок, раньше которого нельзя начать данную работу, не нарушив принятой технологической последовательности. Он определяется наиболее долгим путем от исходного события до начала данной работы

Позднее окончание работы - самый поздний срок окончания работы, при котором не увеличивается общая продолжительность работ. Он определяется самым коротким путем от данного события до завершения всех работ.

Раннее окончание - срок, раньше которого нельзя закончить данную работу. Он равен раннему началу плюс продолжительность данной работы

Позднее начало - срок, позже которого нельзя начинать данную работу, не увеличив общую продолжительность строительства. Он равен позднему окончанию минус продолжительность данной работы.

Если событие является окончанием лишь одной работы (т.е. в него направлена только одна стрелка), то раннее окончание этой работы совпадает с ранним началом последующей.

Общий (полный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не увеличивая общую продолжительность работ. Он определяется разностью между поздним и ранним началом (или поздним и ранним окончанием - что то же самое).

Частный (свободный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее частным резервом.

5. Динамическое программирование. Принцип оптимальности и управления Беллмана.

Динамическое программирование – один из наиболее мощных методов оптимизации. С задачами принятия рациональных решений, выбора наилучших вариантов, оптимального управления имеют дело специалисты разного профиля. Среди методов оптимизации динамическое программирование занимает особое положение. Этот метод исключительно привлекателен благодаря простоте и ясности своего основного принципа – принципа оптимальности. Сфера приложения принципа оптимальности чрезвычайно широка, круг задач, к которым он может быть применен, до настоящего времени еще полностью не очерчен. Динамическое программирование с самого начала выступает как средство практического решения задач оптимизации.

Кроме принципа оптимальности, основного приема исследования, большую роль в аппарате динамического программирования играет идея погружения конкретной задачи оптимизации в семейство аналогичных задач. Третьей его особенностью, выделяющей его среди других методов оптимизации, является форма конечного результата. Применение принципа оптимальности и принципа погружения в многошаговых, дискретных процессах приводят к рекуррентно-функцио-нальным уравнениям относительно оптимального значения критерия качества. Полученные уравнения позволяют последовательно выписать оптимальные управления для исходной задачи. Выигрыш здесь состоит в том, что задача вычисления управления для всего процесса разбивается на ряд более простых задач вычисления управления для отдельных этапов процесса.

Главным недостатком метода является, говоря словами Беллмана, «проклятие размерности» – его сложность катастрофически возрастает с увеличением размерности задачи.

6. Задача о распределении средств между предприятиями.

Можно сказать, что процедура построения оптимального управления методом динамического программирования распадается на две стадии: предварительную и окончательную. На предварительной стадии для каждого шага определяется УОУ зависящее от состояния системы (достигнутого в результате предыдущих шагов), и условно оптимальный выигрыш на всех оставшихся шагах, начиная с данного, также зависящий от состояния. На окончательной стадии определяется (безусловное) оптимальное управление для каждого шага. Предварительная (условная) оптимизация производится по шагам в обратном порядке: от последнего шага к первому; окончательная (безусловная) оптимизация - также по шагам, но в естественном порядке: от первого шага к последнему. Из двух стадий оптимизации несравненно более важной и трудоемкой является первая. После окончания первой стадии выполнение второй трудности не представляет: остается только "прочесть" рекомендации, уже заготовленные на первой стадии.

МИНИСТЕРСТВО ОБРАЗОВАНИЯРОССИЙСКОЙ ФЕДЕРАЦИИ

Московский государственный университет экономики, статистики и информатики

Московский международный институт эконометрики, информатики, финансов и права

И.Н. Мастяева Г.Я. Горбовцов О.Н. Семенихина

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ В ЭКОНОМИКЕ

Москва, 2001

УДК 519.6 ББК 22.18 М - 327

И.Н. Мастяева, Г.Я. Горбовцов, О.Н. Семенихина. ИССЛЕДОВАНИЕ ОПЕРАЦИЙ В ЭКОНОМИКЕ: Учебное пособие / Московский Государственный Университет Экономики, Статистики и Информатики. М.: МЭСИ, 2001. с.116

© И.Н. Мастяева, 2001

© Г.Я. Горбовцов, 2001

© О.Н. Семенихина, 2001.

© Московский государственный университет экономики, статистики и информатики, 2001.

© Московский международный институт эконометрики, информатики, финансов и права, 2001

Программа курса «Исследование операций в экономике»........................

Моделирование в экономике.....................................................................

Теория двойственности в линейном программировании.

Двойственный симплексметод. .................................................................

2.1. Определение и экономический смысл двойственной ЗЛП...........

2.2.Основные положения теории двойственности..................................

2.3.Анализ решения ЗЛП с помощью теории двойственности.............

2.4. Анализ решения ЗЛП на основе отчётов MS EXCEL .....................

2.5. Двойственный симплекс-метод (Р-метод)........................................

Целочисленные модели исследования операций...................................

Экономические задачи, сводящиеся к транспортной модели..............

Нелинейные модели................................................................................

5.1. Методы одномерной оптимизации..................................................

5.2. Методы безусловной оптимизации. ................................................

Литература. ..................................................................................................

Программа курса «Исследование операций в экономике»

Тема 1. Моделирование в экономике. Определение экономикоматематической модели, ее свойства. Классификация моделей по различным признакам.

Тема 2. Теория двойственности в линейном программировании. Двойственный симплекс-метод. Определение и правила постро-

ения двойственных задач, их экономический смысл. Теоремы двойственности. Различные способы отыскания решения двойственной задачи по решению прямой. Экономический анализ линейных моделей на основе теории двойственности. Двойственный симплекс-метод. Р- матрица, псевдоплан, условия перехода от одного псевдоплана к другому. Алгоритм двойственного симплекс-метода.

Тема 3. Целочисленные модели исследования операций.

Примеры задач целочисленного линейного программирования. Метод ветвей и границ решения задачи целочисленного линейного программирования: идея и алгоритм. Постановка задачи коммивояжера. Применение метода ветвей и границ для решения задачи коммивояжера.

Тема 4. Экономические задачи, сводящиеся к транспортным моделям. Транспортная задача (ТЗ) линейного программирования. Математическая модель. Закрытая и открытая модели ТЗ. Опорный план ТЗ. Методы построения первоначальных опорных планов. Метод потенциалов решения ТЗ, его обоснование и алгоритм. ТЗ с запрещенными перевозками. Задача оптимального распределения оборудования. Формирование оптимального штата фирмы. Задача календарного планирования. Задача о назначениях, венгерский метод ее решения. Оптимальное исследование рынка. Оптимальное использование рабочих агентов.

Тема 5. Нелинейные модели исследования операций.

Постановка задачи нелинейного программирования (ЗНП). Одномерная оптимизация. Алгоритм Свенна поиска отрезка, содержащего точку максимума. Метод золотого сечения решения задачи одномерной оптимизации. Безусловная оптимизация. Метод скорейшего подъема (спуска). Условная оптимизация. Метод Зойтендейка.

1. Моделирование в экономике

В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По степени агрегирования объектов моделирования различают модели:

Микроэкономические; - одно-, двухсекторные (одно-, двухпродуктовые);

Многосекторные (многопродуктовые); - макроэкономические; - глобальные.

По учету фактора времени различают модели: - статические; - динамические.

В статических моделях экономическая система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают экономическую систему в развитии.

По цели создания и применения различают модели: - балансовые; - эконометрические;

Оптимизационные; - сетевые;

Систем массового обслуживания; - имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается

через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наиболее эффективным образом для достижения поставленной цели.

Сетевые модели наиболее широко применяются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель наряду с машинными решениями содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае ЭВМ, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

По учету фактора неопределенности различают модели:

- детерминированные (с однозначно определенными резуль-

- стохастические (с различными вероятностными результатами). По типу математического аппарата различают модели:

- линейного и нелинейного программирования;

- корреляционно-регрессионные;

Матричные;

Сетевые;

Теории игр;

- теории массового обслуживания и т.д .

Домашнее задание 1.

1.Рассматривается пять проектов, которые могут быть осуществлены в течение последующих трех лет. Ожидаемые величины прибыли от реализации каждого из проектов и распределение необходимых капиталовложений по годам (в тыс. руб.) приводятся в таблице.

Распределение

капиталовложений

год 2 год 3

Максимальный

капиталовложений

Требуется выбрать совокупность проектов, которой соответствует максимум суммарной прибыли.

2. Совет директоров фирмы изучает предложения по наращиванию производственных мощностей на трех принадлежащих фирме предприятиях. Для расширения всех трех предприятий фирма выделяет средства в объеме 5 млн. руб. Каждое предприятие представляет на рассмотрение проекты, которые характеризуются величинами суммарных затрат (C) и доходов (R), связанных с реализацией каждого из проектов. Соответствующие данные приведены в таблице, в которую включены также проекты с нулевыми затратами. Это позволяет учесть возможность отказаться от расширения какого-либо предприятия.

Предприятие 1

Предприятие 2

Предприятие 3

Цель фирмы состоит в получении максимального дохода от инвестиций.

3. В задаче выбора вариантов примем, что для получения результата в виде максимально возможной прибыли необходимо два

вида ресурсов: материальные и трудовые Возможны четыре варианта расхода ресурсов и получения прибыли (табл.).

Показатели

Варианты

Прибыль, д.е./ед.

Материальные

Трудовые ресурсы

Требуется выбрать, какие варианты принять для реализации при условии, чтобы общее число принятых вариантов не превышало трех.

4. Некоторая фирма переводит свой главный завод на производство определенного вида изделий, которые будут выпускаться в течение четырех месяцев. Величины спроса в течение этих четырех месяцев составляют 100, 200, 180 и 300 изделий соответственно. В каждый месяц спрос можно удовлетворить за счет

1) избытка произведенных в прошлом месяце изделий, сохраняющихся для реализации в будущем;

2) производства изделий в течение текущего месяца; 3) избытка производства изделий в более поздние месяцы в счет

невыполненных заказов.

Затраты на одно изделие в каждый месяц составляют 4 долл. Изделие, произведенное для более поздней реализации, влечет за собой дополнительные издержки на хранение в 0,5 долл. в месяц. С другой стороны, каждое изделие, выпускаемое в счет невыполненных заказов, облагается штрафом 2 долл. в месяц. Объем производства изделий меняется от месяца к месяцу в зависимости от выпуска других изделий.

В рассматриваемые четыре месяца предполагается выпуск 50, 180, 280 и 270 изделий соответственно. Требуется составить план, имеющий минимальную стоимость производства и хранения изделий.

5. Известен рыночный спрос на определенное изделие в количестве 180 штук. Это изделие может быть изготовлено двумя

предприятиями по различным технологиям. При производстве x1 изделий первым предприятием его затраты составят (4x1 + x1 2 ) руб., а

при изготовлении x2 изделий вторым предприятием они составят (8x2 + x2 2 ) руб. Определить, сколько изделий, изготовленных по каждой технологии, может предложить концерн, чтобы общие издержки его производства были минимальными.

6. На двух предприятиях холдинга необходимо изготовить 200

изделий некоторой продукции. Затраты, связанные с производством x1 изделий на первом предприятии, равны 4x1 2 руб., а затраты,

обусловленные изготовлением x2 изделий на втором предприятии, составляют (20x2 + 6x2 2 ) руб.

Определить, сколько изделий следует произвести на каждом из предприятий, чтобы общие затраты на производство необходимой продукции были минимальными.

7. Для производства двух видов изделий А и В используется три типа технологического оборудования. Известны затраты времени и других ресурсов на производство ед. изделия каждого вида (см. табл.)

Нормы времени

Огр. по фонду времени

оборудования

Верхний предел

Нижний предел

производство

Требуется определить, сколько изделий каждого вида необходимо изготовить, чтобы себестоимость одного изделия была минимальной.

8.Имеется в наличии b = 5 единиц одного ресурса, который в начале планового периода необходимо распределить между тремя предприятиями. Известны аk – количество единиц ресурса, идущего на изготовление единицы продукции k-м предприятием (k = 1,2,3), а2 =а3 =1, а1 =2 и gk (yk ) – доход от выпуска yk единиц продукции k-м предприятием.

g1 (y1 )=1,4y1 – 0,2y1 2 g2 (y2 )=2y2 g3 (y3 )=2y3 – 0,3y3 2

Требуется распределить имеющийся ресурс между предприятиями так, чтобы в конце планового периода получить максимальный доход.

9.Требуется разместить n производственных агрегатов на n различных производственных участках. Количество материалов, транспортируемых между агрегатами i и j, равно dij ; удельные затраты на транспортировку материалов с участка p на участок q составляют cqp . Построить модель целочисленного программирования, минимизирующую суммарные затраты на транспортировку.

10. Рассматривается задача производственного планирования, связанная с изготовлением 2000 единиц некоторой продукции на трех станках. Величины накладных расходов, затрат на производство единицы продукции и максимальной производительности для каждого из станков приведены в таблице.

Накладные

Производительность

производство

(в единицах продукции)

единицы продукции

Сформулировать задачу целочисленного программирования.

2. Теория двойственности в линейном программировании. Двойственный симплексметод.

В данном разделе вводится важное понятие теории линейного программирования - понятие двойственности. Двойственная задача - это вспомогательная задача линейного программирования, формулируемая с помощью определенных правил непосредственно из условий исходной, или прямой задачи, которая применима к любой форме представления прямой задачи. В основу такого подхода положен тот факт, что использование симплекс-метода требует приведения любой ЗЛП к каноническому виду.

Адрес 153003, г. Иваново, ул. Рабфаковская, д. 34, корпус А, ауд. 206 Аудитории Ауд. А-205 (Телефон: 269796) Ауд. А-206 (Телефон: 269748)

Руководитель

Фото Должность декан Степень доктор экономических наук Звание Профессор E-mail karyakin economic ispu ru Информация

В 1979 году закончил ИЭИ по специальности «Электрические машины». В 1987 году защитил кандидатскую диссертацию в ИЭИ на тему: «Разработка и совершенствование процедур, алгоритмов и моделей автоматизированного проектирования силовых трансформаторов при решении задач структурно-параметрической оптимизации по специальности «Системы автоматизированного проектирования» 05.13.12. В 1999 году защитил докторскую диссертацию в ИвГУ на тему: «Совершенствование управления предприятиями в наукоемких отраслях на основе динамических структур: Теоретико-методические аспекты» по специальности 08.00.05, 08.00.28 "Экономика и управление в народном хозяйстве".
Научные интересы : стратегический менеджмент, управление персоналом, организационное поведение, энергетическая безопасность, информационные системы в экономике.
Публикации более 230 наименований. Среди них 22 учебных пособия и 5 монографий, 102 статьи в отечественных и зарубежных журналах и сборниках трудов.

Секретарь: Щудрова Наталья Сергеевна

Штатные сотрудники

Фото

Должность доцент Степень кандидат экономических наук E-mail ivanova-oe bk ru Информация

В 2008 г. закончила ИГЭУ по специальности 080507.65 «Менеджмент организации» (спец. «Финансовый менеджмент»). В 2011 г. в ЯрГУ защитила диссертацию на соискание ученой степени кандидата экономических наук по специальности 08.00.05 «Экономика и управление в народном хозяйстве (управление инновациями)» на тему: «Инновационный потенциал энергетических сетевых компаний: оценка и использование при формировании инвестиционной стоимости».
Сертификаты, удостоверения
Научные интересы : управление инновациями, развитие инновационной инфраструктуры регионов и территорий, модернизация национальной инновационной системы.
Публикации : автор более 80 научных трудов и учебно-методических публикаций.

Функции: заместитель декана по 1-2 курсам и заочному отделению.
Контакты : корпус А, ауд. 205

Фото

Должность доцент Степень кандидат исторических наук Звание Доцент E-mail kor_tv mail ru Информация

В 1997 году закончила ИвГУ по специальности «Историк. Преподаватель истории». В 2002 году защитила кандидатскую диссертацию в ИвГУ на тему «Женское движение во Франции 1789 - 1914 гг.» по специальности 07.00.03 - всеобщая история.
Научные интересы : гендерная история, социальная история, политическая история, социология общественных движений, история женского образования, воспитательная работа, компетентностный подход.
Публикации : автор 71 публикации, их них: 3 монографии, 4 учебных пособия, 11 учебно-методических разработок, 2 электронных учебных пособия.
Повышение квалификации

Функции : заместитель декана по воспитательной работе.

Фото

Должность доцент Информация

В 1990 году с отличием окончил Ивановский энергетический институт им. В.И. Ленина, квалификация инженер -промтеплоэнергетик.
Сертификаты, удостоверения :

    Сертификат №0180-02.06 - независимого эксперта по расчету и экспертизе нормативов технологических потерь при передаче тепловой энергии, удельного расхода топлива на отпущенную электрическую и тепловую энергию от тепловых электростанций и котельных и нормативов создания запасов топлива на тепловых электростанциях и котельных, выдан Межрегиональной ассоциацией «Энергоэффективность и нормирование», Межрегиональным институтом менеджмента энергоэффективности, г. Москва, 2006 г.

    Свидетельство №Э-0066 о подготовке энергоаудиторов и энергоменеджеров, выдано Нижегородским учебно-научным инновационным центром энергосбережения НГТУ, 2000 г.

    Удостоверение №Э-135 о краткосрочном повышении квалификации по «Энергетическому аудиту и энергосбережению в бюджетной сфере и промышленности», выдано Нижегородским учебно-научным инновационным центром энергосбережения НГТУ, 2001 г.

    Свидетельство о повышении квалификации СПК-0068 по экономике и управлению производством, выдано ФПКП ИГЭУ, 2002 г.

    Удостоверение №ГУ06-925 о краткосрочном повышении квалификации по расчету и экспертизе технологических потерь тепловой энергии, удельных расходов топлива и нормативов создания запасов топлива, выдано Межрегиональным институтом менеджмента энергоэффективности ГОУ ВПО МГТУ «Станкин», г. Москва, 2006 г.

    Свидетельство о повышении квалификации на ФПКП по программе "Вопросы технологии обучения", №УПК-231 выдано ФПКП ИГЭУ, 2007 г.

Научные интересы : энергосбережение, энергетический менеджмент, энергетический аудит, цены и тарифы на энергию, оценка экономической эффективности инвестиционных проектов.
Публикации : автор более 85 публикаций, из них 8 учебно-методических и более 40 научно-исследовательских работ.

Функции: заместитель декана по профориентации, член ревизионной комиссии профсоюзной организации.

Фото

Должность доцент Степень кандидат экономических наук Звание Доцент E-mail tarasova_as eiop ispu ru Информация

В 2002 году окончила ИГЭУ по специальности «Экономика и управление на предприятии». В 2009 году защитила кандидатскую диссертацию в ИГХТУ на тему: «Совершенствование методов обеспечения финансовой устойчивости оптовых генерирующих компаний Российской Федерации» по специальности 08.00.10 «Финансы, денежное обращение и кредит».

Сертификаты , удостоверения :

    Сертификат ГОУ ВПО «Московский Государственный университет экономики, статистики и информатики (МЭСИ)», г. Москва по направлению «Менеджмент».

    Сертификат ГОУ ВПО «Московский Государственный университет экономики, статистики и информатики (МЭСИ)», г. Москва по программе «Эффективное управление финансами высшего учебного заведения».

    Сертификат Корпоративном энергетическом университете, г. Москва по программе повышения квалификации преподавателей Вузов «Экономика и управление в современной электроэнергетике.

Научые интересы : стратегический анализ, инвестиционная политика компаний, финансовая устойчивость, внешнеэкономическая деятельность.
Публикации : автор 23 публикаций, в том числе 1 монографии, 4 методических пособий и 17 научных статей.

Функции: заместитель декана по III-IV курсам и магистратуре.
Контакты : корпус А, ауд. 205

КУРСОВОЙ ПРОЕКТ

Исследование операций в экономике

Введение

Графическое решение задач линейного программирования

Решение задач линейного программирования симплекс-методом

Транспортная задача

Задача о назначениях

Задача о ранце

Заключение

Литература

Введение

Успешная реализация достижений научно-технического прогресса в нашей стране тесным образом связана с использованием экономико-математических методов и средств вычислительной техники при решении задач из различных областей человеческой деятельности. Исключительно важное значение приобретает использование указанных методов и средств при решении экономических задач.

Управление и планирование являются наиболее сложными функциями администрации предприятий, менеджеров, руководителей хозяйственных органов и штабов различного уровня. Характер управления и планирования определяет путь достижения цели и оказывает существенное влияние на качество решения поставленной задачи. В современных условиях повышается ответственность за качество принимаемых управленческих решений. Несколько неудачных управленческих решений и предприятие вступает в стадию банкротства.

В настоящее время существует две группы методов принятия управленческих решений:

) логический (когда решение принимается на основании опыта, интуиции и других личностных качеств лица, принимающего решение);

) формально-логический или формализованный (когда решение принимается на основе изучения предварительно-построенной модели). При этом появляется возможность оценить последствия каждого из вариантов и выбрать наилучший по некоторому критерию. В этой группе методов важную роль играют экономико-математические модели.

Образ реальной действительности, в котором отражены характерные для изучаемого явления признаки или черты реального объекта (оригинала), именуют моделью, а сам процесс построения моделей называют моделированием.

Использование цифровых и знаковых символов позволяет создать категорию моделей, которая включает формально-логические и математические модели.

Любое управление в экономике связано с выработкой и принятием управленческих решений, воплощающихся в управленческие воздействия. Субъекты управления стремятся определить последствия определённого решения. Прежде чем осуществлять управляющее воздействие, принимать окончательное решение, желательно проверить его действенность, послед-ствия, результат. При этом фактически используются логические модели процессов управления, мысленные сценарии их протекания. Но возможности даже квалифицированного, опытного специалиста воспроизвести в своём мозгу картину поведения объекта управления под влиянием управляющих воздействий довольно ограничены. Приходится прибегать к помощи математических расчётов, дополняющих мысленные представления, иллюстрирующих ожидаемую картину управляемого процесса в виде цифр, кривых, графиков, таблиц. Использование математических методов при формировании представлений об экономических объектах и процессах в ходе экономического анализа, прогнозирования, планирования называют применением экономико-математических методов.

Наиболее распространённая форма, основной инструмент воплощения экономико-математических методов - это экономико-математическое моделирование. Математическое моделирование опирается на математическое описание моделируемого объекта (процесса) в виде формул, зависимостей с помощью математических символов, знаков.

Экономико-математическая модель представляет собой формализованное описание управляемого экономического объекта (процесса), включающее заранее заданные параметры, показатели и искомые неизвестные величины, характеризующие состояние объекта, его функционирование, объединённые между собой связями в виде математических зависимостей, соотношений, формул. Модель способна быть только аналогом моделируемой системы, отражающим основные, существенные свойства изучаемой управляемой системы, которые наиболее важны с позиций управления.

Благодаря моделированию субъект управления способен в ходе анализа иметь дело не с реальным объектом управления, а с его аналогом в виде модели. Это значительно расширяет возможности поиска лучших способов управления, не нарушая функционирования реального объекта управления в период выработки управленческих решений. Появляется возможность применить вычислительную технику, использовать компьютеры, для которых математический язык моделей является самым удобным. Благодаря компьютерам можно производить многовариантные модельные расчёты, что повышает шансы на отыскание лучших вариантов.

Для того чтобы принять обоснованное решение необходимо получить и обработать огромное количество информации. Ответственные управленческие решения зачастую связаны с судьбами людей, принимающих их, и с большими материальными ценностями. Но сейчас недостаточно указать путь, ведущий к достижению цели. Необходимо из всех возможных путей выбрать наиболее экономный, учитывающий особенности течения и развития управляемого процесса и наилучшим образом соответствующий поставленной задаче.

Процесс управления производственной системой представляет собой процесс принятия решений, что всегда связано с выбором из множества возможных решений, допускаемых обстоятельствами решаемой задачи, то есть имеется множественность имеющихся вариантов. Выбранное решение должно соответствовать некоторому критерию целесообразности. Этим объясняется связь задач принятия управленческих решений с методами теории оптимизации.

В процессе выработки решений приходится формализовать зависимость между отдельными элементами системы, применять математический аппарат, общие кибернетические принципы и закономерности, то есть использовать экономико-математические методы.

Известно, что экономический эффект от рациональных методов управления и планирования, применяемых в широких масштабах и на высоком уровне, способен в ряде случаев повысить эффект от существенного увеличения мощностей. Возникает потребность в новых математических методах, позволяющих анализировать ритм производства, взаимоотношения между людьми и между коллективами.

Математические машины, внедряемые в производство и управление и используемые в научно-исследовательской работе, создают огромные возможности для развития различных отраслей науки, для совершенствования методов планирования и автоматизации производства. Однако без строгих формулировок задач, без формально-математического описания процессов не может быть достигнут необходимый уровень использования техники. Возникают вопросы, связанные с формализацией физических, экономических, технических и других процессов. Формализация задачи - необходимый этап для перевода каждой прикладной экономической задачи на язык математических машин.

Для постановки задачи математического программирования необходимо сформулировать цель управления и указать ограничения на выбор параметров управления, обусловленные особенностями управляемого процесса. Задача математического программирования сводится к выбору системы параметров, обеспечивающей оптимальное (в заданном смысле) качество процесса управления в рамках сформулированных ограничений.

Всё вышесказанное доказывает необходимость применения экономико-математических методов и моделей в управлении для принятия обоснованных управленческих решений.

В данной курсовой работе даётся представление о возможностях практического использования математического программирования и экономико-математических методов при решении конкретных экономических задач.

.Графическое решение задач линейного программирования.

Решить графически задачу

4x1+x2 → max,

при следующих ограничениях:

x1+7x2≤140

x1+10x2≤150

x1+20x2≤100

Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.

Обозначим границы области многоугольника решений.

Рассмотрим целевую функцию задачи F = 4x1+x2 → max.

Построим прямую, отвечающую значению функции F = 0: F = 4x1+x2 = 0. Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Область допустимых решений представляет собой многоугольник

Прямая F(x) = const пересекает область в точке A. Так как точка A получена в результате пересечения прямых (1) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

x1+7x2=140

x1+20x2=100

Решив систему уравнений, получим: x1 = 5.7534, x2 = 3.5616

Откуда найдем максимальное значение целевой функции:

(X) = 4*5.7534 + 1*3.5616 = 26.5753

2. Решение задач линейного программирования симплекс - методом.

Решим прямую задачу линейного программирования симплексным методом, с использованием симплексной таблицы.

Определим максимальное значение целевой функции F(X) = 5x1 + 5x2 + 11x3+9 при следующих условиях-ограничений.

При вычислениях значение Fc = 9 временно не учитываем.

линейный программирование математический экономический

x1 + x2 + x3 + x4≤0

x1 + 5x2 + 3x3 + 2x4≤0

x1 + 5x2 + 10x3 + 15x4≤0

Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).

В 1-м неравенстве смысла (≤) вводим базисную переменную x5. В 2-м неравенстве смысла (≤) вводим базисную переменную x6. В 3-м неравенстве смысла (≤) вводим базисную переменную x7.

x1 + 1x2 + 1x3 + 1x4 + 1x5 + 0x6 + 0x7 = 0

x1 + 5x2 + 3x3 + 2x4 + 0x5 + 1x6 + 0x7 = 0

x1 + 5x2 + 10x3 + 15x4 + 0x5 + 0x6 + 1x7 = 0

Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

11111007532010351015001

Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.

Решим систему уравнений относительно базисных переменных: x5, x6, x7

Полагая, что свободные переменные равны 0, получим первый опорный план: X1 = (0,0,0,0,0,0,0)

Базисное решение называется допустимым, если оно неотрицательно.

БазисBx1x2x3x4x5x6x7x501111100x607532010x70351015001F(X0)0-5-5-110000

Переходим к основному алгоритму симплекс-метода.

Итерация №0.

Проверка критерия оптимальности.

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной x3, так как это наибольший коэффициент по модулю.

Определение новой свободной переменной.

Вычислим значения Di по строкам как частное от деления: bi / ai3

и из них выберем наименьшее:(0: 1, 0: 3, 0: 10) = 0

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (1) и находится на пересечении ведущего столбца и ведущей строки.

БазисBx1x2x3x4x5x6x7minx5011111000x6075320100x703510150010F(X1)0-5-5-1100000

Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы.

Вместо переменной x5 в план 1 войдет переменная x3.

Строка, соответствующая переменной x3 в плане 1, получена в результате деления всех элементов строки x5 плана 0 на разрешающий элемент РЭ=1

На месте разрешающего элемента в плане 1 получаем 1.

В остальных клетках столбца x3 плана 1 записываем нули.

Таким образом, в новом плане 1 заполнены строка x3 и столбец x3.

Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

Bx 1x 2x 3x 4x 5x 6x 70: 11: 11: 11: 11: 11: 10: 10: 10-(0 3):17-(1 3):15-(1 3):13-(1 3):12-(1 3):10-(1 3):11-(0 3):10-(0 3):10-(0 10):13-(1 10):15-(1 10):110-(1 10):115-(1 10):10-(1 10):10-(0 10):11-(0 10):10-(0 -11):1-5-(1 -11):1-5-(1 -11):1-11-(1 -11):10-(1 -11):10-(1 -11):10-(0 -11):10-(0 -11):1

Получаем новую симплекс-таблицу:

БазисBx1

УДК 330.115(075.8) ББК22.1я73 А94

Афанасьев М.Ю., Суворов Б.П. Исследование операций в экономике: модели, задачи, решения:А94 Учеб. пособие. - М.: ИНФРА-М, 2003. - 444 с. - (Серия «Высшее образование»). ISBN 5-16-001580-9

Учебное пособие подготовлено в соответствии с требованиями государственного образовательного стандарта и содержит учебные материалы и методику решения широкого спектра экономических задач. В методике реализован новый подход к проведению практических занятий с использованием компьютерных технологий обучения в сочетании с программными средствами решения задач.

Для студентов экономических вузов и преподавателей. ББК 22.1я73

ISBN5-16-001580-9

©М.Ю. Афанасьев, Б.П. Суворов, 2003

Предисловие..........................................................................................................................................................................................

Глава 1. Оптимизация плана производства........................................................................................................................................

Глава 2. Оптимальное смешение.......................................................................................................................................................

Глава 3. Оптимальный раскрой.........................................................................................................................................................

Глава 4. Планирование финансов......................................................................................................................................................

Глава 5. Транспортная задача............................................................................................................................................................

Глава 6. Задача о назначениях...........................................................................................................................................................

Глава 7. Сетевой анализ проектов. Метод СРМ...............................................................................................................................

Глава 8. Сетевой анализ проектов. Метод PERT.............................................................................................................................

Глава 9. Анализ затрат на реализацию проекта.............................................................................................................................

Глава 10. Стратегические игры........................................................................................................................................................

Глава 11. Нелинейное программирование......................................................................................................................................

Глава 12. Модели управления запасами.........................................................................................................................................

Глава 13. Модели систем массового обслуживания......................................................................................................................

Глава 14. Имитационное моделирование.......................................................................................................................................

Глава 15. Целочисленные задачи линейного программирования................................................................................................

Глава 16. Основы теории принятия решений.................................................................................................................................

Список основной литературы..........................................................................................................................................................

Список дополнительной литературы..............................................................................................................................................

Предисловие

Студент экономического вуза, прослушавший курс «Исследование операций», должен знать основные экономические проблемы, при решении которых возникает необходимость в математическом инструментарии. Он должен ориентироваться в экономической постановке задачи и определять по ней, в каком разделе исследования операций следует искать средства ее решения; должен уметь формализовать экономическую задачу, т.е. описать ее с помощью известной математической модели, провести расчеты и получить количественные результаты. Однако самое главное - студент должен уметь анализировать эти результаты и делать выводы, адекватные поставленной экономической задаче.

В каждой главе материал изложен в такой последовательности: цели, модели, примеры, вопросы, задачи, ситуации.

Цели. Устанавливаются цели изучения темы. Перечисляются основные понятия, которые должны быть изучены, и навыки, которые должны быть приобретены после изучения материала, предлагаемого в рамках данной темы.

Модели. Приводится описание экономико-математических моделей, необходимых для выполнения заданий по данной теме. Формулируются условия для применения этих моделей. Материал этого раздела можно рассматривать как краткий конспект лекции по теме.

Примеры. Демонстрируется, как описанные модели могут использоваться для решения экономических задач. При этом приводятся формулировка задачи, описание модели, необходимой для решения задачи, результаты расчетов по модели и анализ этих результатов.

Вопросы. Наиболее простая форма контроля знаний. Предлагается набор из нескольких вопросов и варианты ответов, один из которых верен.

Задачи. Основная форма контроля результатов обучения по программе подготовки бакалавров. Предлагается набор задач для самостоятельного решения. Решение любой задачи предполагает построение соответствующей модели, проведение необходимых расчетов и получение ответов на поставленные в задаче вопросы.

Ситуации. Основная форма контроля результатов обучения по программе подготовки магистров. Приводится описание конкретных экономических ситуаций, которые необходимо проанализировать. Цель такого анализа - научить использовать для исследования сложных экономических проблем полученные навыки решения задач. Нет и не может быть однозначных ответов на все вопросы, содержащиеся в заданиях к изложенным ситуациям. В этом принципиальное отличие ситуации от обычной задачи. Как правило, описание конкретной ситуации не содержит всей необходимой информации. Читателю приходится делать предположения и вносить необходимые добавления. Поэтому, анализируя одну и ту же ситуацию, два студента могут получить разные результаты. И оба результата будут верны. Цель анализа ситуации не сводится к получению ответа. Важен не результат, а процесс анализа.

Некоторые задачи и ситуации заимствованы из других источников и представлены в переработанном виде.

В конце каждой главы приведены ответы на вопросы и решения задач.

Данное учебное пособие можно использовать при традиционной форме проведения практических занятий, когда студенты все вместе решают задачу, предложенную преподавателем. Более современным представляется подход, основанный на использовании компьютерной технологии обучения в сочетании с программными средствами решения задач. Именно такую технологию проведения практических занятий уже более 15 лет используют авторы. В ее основе - компьютерный учебник «Исследование операций в экономике». Он содержит теоретический материал, многие из приведенных в данном учебном пособии задач, а также средства контроля правильности их решения с выборочной диагностикой ошибок.

Некоторые разделы исследования операций, например динамическое программирование, не представлены в этой книге, потому что авторы не могут предложить читателю удобное программное обеспечение для получения количественных оценок по соответствующим моделям.

Авторы благодарят А. Б. Ароновича за сотрудничество при подготовке глав 10 и 11, а также Н.В. Васильеву, чей опыт практических занятий по курсу «Исследование операций» позволил внести полезные коррективы в материал учебного пособия.

Глава 1. Оптимизация плана производства

В данной главе показаны возможности использования модели линейного программирования (ЛП) для определения плана производства. Эти возможности обобщаются для случая, когда закупка готовой продукции для последующей реализации может оказаться для производителя предпочтительнее, чем использование собственных мощностей. Рассматривается также задача производственного планирования, учитывающая динамику спроса, производства и хранения продукции. Наиболее часто такого рода задачи возникают на уровне агрегированного планирования и оперативного управления

микроэкономическими объектами.

После того как вы выполните задания, предлагаемые в этой главе, вы будете уметь определять и использовать для экономического анализа:

целевую функцию;

ограничения;

допустимый план;

множество допустимых планов;

модель линейного программирования;

оптимальный план;

двойственные оценки;

границы устойчивости.

Общая постановка задачи планирования производства: необходимо определить план производства одного или нескольких видов продукции, который обеспечивает наиболее рациональное использование имеющихся материальных, финансовых и других видов ресурсов. Такой план должен быть оптимальнымс точки зрения выбранного критерия - максимума прибыли, минимума затрат на производство и т.д.

Введем обозначения:

п - количество выпускаемых продуктов;

т - количество используемых производственных ресурсов (например, производственные мощности, сырье, рабочая сила);

а ij - объем затрат i- го ресурса на выпуск единицы j -й продукции; сj - прибыль от выпуска и реализации единицы j- го продукта;

b i - количество имеющегося i -го ресурса;х j - объем выпуска j -го продукта.

Формально задача оптимизации производственной программы может быть описана с помощью следующей модели линейного программирования:

Здесь (1) - целевая функция (максимум прибыли);

(2) - система специальных ограничений (constraint) на объем фактически имеющихся ресурсов;

(3) - система общих ограничений (на неотрицательность переменных);

хj -переменная (variable).

Задача (1)-(3) называется задачей линейного программирования в стандартной форме на максимум. Задача линейного программирования в стандартной форме на минимумимеет вид

Вектор х = (x 1 ,x 2 , ...,x n ), компонентых j которого удовлетворяют ограничениям (2) и (3) (или (5) и (6) в задаче на минимум), называетсядопустимым решением илидопустимым планом задачи ЛП.

Совокупность всех допустимых планов называется множеством допустимых планов.

Допустимое решение задачи ЛП, на котором целевая функция (1) (или (3) в задаче на минимум) достигает максимального (минимального) значения, называется оптимальным решением задачи ЛП.

С каждой задачей ЛП связывают другую задачу ЛП, которая записывается по определенным правилам и называется двойственной задачей ЛП.

Двойственной к задаче ЛП (1)-(3) является задача

Соответственно, двойственной к задаче ЛП (7)-(9) является задача (1)-(3). Каждой переменной (специальному ограничению) исходной задачи соответствует специальное ограничение (переменная) двойственной задачи. Если исходная задача ЛП имеет решение, то имеет решение и двойственная к ней задача, при этом значения целевых функций для соответствующих оптимальных решений равны.

Компонента y i * оптимального решения двойственной задачи (7)-(9) называетсядвойственной оценкой

å n a ijx j≤

(Dual Value) ограничения j = 1

исходной задачи ЛП.

c j xj

Пусть ϕ = max (j = 1

), где х j - компонента допустимого решения задачи (1)-(3).

Тогда при выполнении условий невырожденности оптимального решения имеют место следующие соотношения:

Изменим значение правой части b i одного основного ограничения(RHS) исходной задачи ЛП.

Пусть b i ′ - минимальное значение правой части основного ограничения, при котором решениеу*

двойственной задачи не изменится. Тогда величину b i ′ называют нижней границей(Lower Bound) устойчивости по правой части ограничения.

Пусть b i ′′ - максимальное значение правой части основного ограничения, при котором решениеy*

двойственной задачи не изменится. Тогда величину b i ′′ называют верхней границей(Upper Bound) устойчивости по правой части ограничения.

Изменим значение одного коэффициента с j целевой функции исходной задачи ЛП.

Пусть c ′ j - минимальное значение коэффициента целевой функции, при котором оптимальное решение

x * исходной задачи не изменится. Тогда величинуc ′ j называют нижней границей устойчивости по коэффициенту целевой функции.

Пусть c ′ j ′ - максимальное значение коэффициента целевой функции, при котором оптимальное

решение х * исходной задачи не изменится. Тогда величинуc ′ j ′ называют верхней границей устойчивости по коэффициенту целевой функции.

Пример 1. Сколько производить?

Предприятие располагает ресурсами сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, прибыль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов указаны в следующей таблице:

1. Сколько продукта 1 следует производить для того, чтобы обеспечить максимальную прибыль?

2. Сколько продукта 2 следует производить для того, чтобы обеспечить максимальную прибыль?

3. Какова максимальная прибыль?

4. На сколько возрастет максимальная прибыль, если запасы сырья увеличатся на 1 т?

5. На сколько возрастет максимальная прибыль, если допустимый объем трудозатрат увеличится с 400

Решение. Пустьх 1 - объем выпуска продукта 1 в тоннах,х 2 - объем выпуска продукта 2 в тоннах. Тогда задача может быть описана в виде следующей модели линейного программирования:

Используя пакет РОМ for WINDOWS (далее- POMWIN ), исходную информацию для решения этой задачи можно представить в виде следующей таблицы:

Решая эту задачу, получаем следующий результат:

В нижней строке указан объем выпуска каждого продукта, удовлетворяющий ограничениям на ресурсы и обеспечивающий максимальную прибыль. Величина 988,24 - максимальное значение целевой функции.

Чтобы обеспечить максимальную прибыль, следует производить 16,47 т продукта 1 и 14,12 т продукта 2.

Максимальная прибыль равна 988,24 тыс. руб.

В правом столбце таблицы указаны двойственные оценки для каждого ограничения. Так, величина 3,82 показывает, что при увеличении запаса сырья на 1 т (до 121) максимальное значение целевой функции для нового оптимального плана увеличится по сравнению с 988,24 на 3,82 тыс. руб. Аналогично можно интерпретировать значение двойственной оценки 1,32 для второго ресурса.

Следующая таблица содержит дополнительную информацию, предоставляемую пакетом POMWIN:

Два правых столбца таблицы - границы устойчивости по значениям коэффициентов целевой функции (верхняя часть таблицы) и правых частей ограничений (нижняя часть).

Так, в случае если прибыль, получаемая от реализации 1 т продукта 1, изменится, но останется в пределах от 21 до 40,83, количество продукта 1 в оптимальном плане не изменится.

В случае если запас сырья изменится, но останется в пределах от 85,71 до 166,66, двойственная оценка этого ресурса не изменится.

Соответственно, если допустимый объем трудозатрат изменится в пределах от 288 до 560 ч, двойственная оценка этого ресурса не изменится.

Если допустимый объем трудозатрат увеличится с 400 до 500 ч, то максимальная прибыль увеличится на 132 тыс. руб.

Пример 2. Производить или покупать?

Фирма производит два типа химикатов. На предстоящий месяц она заключила контракт на поставку следующего количества этих химикатов:

Производство фирмы ограничено ресурсом времени работы двух химических реакторов. Каждый тип химикатов должен быть обработан сначала в реакторе 1, а затем в реакторе 2. Ниже в таблице приведен фонд рабочего времени, имеющийся у каждого реактора в следующем месяце, а также время на обработку одной тонны каждого химиката в каждом реакторе:

Из-за ограниченных возможностей, связанных с существующим фондом времени на обработку химикатов в реакторах, фирма не имеет достаточных мощностей, чтобы выполнить обязательства по контракту. Выход заключается в следующем: фирма должна купить какое-то количество этих химикатов у других производителей, чтобы использовать эти закупки для выполнения контракта. Ниже приводится таблица затрат на производство химикатов самой фирмой и на закупку их со стороны:

Цель фирмы состоит в том, чтобы обеспечить выполнение контракта с минимальными издержками. Это позволит ей максимизировать прибыль, так как цены на химикаты уже оговорены контрактом. Другими словами, фирма должна принять решение: сколько химикатов каждого типа производить у себя, а сколько - закупать со стороны для того, чтобы выполнить контракт с минимальными издержками.

1. Сколько химикатов типа 1 следует производить фирме?

2. Сколько химикатов типа 2 следует производить фирме?

3. Сколько химикатов типа 1 следует закупать со стороны?

4. Сколько химикатов типа 2 следует закупать со стороны?

5. Каковы минимальные издержки на выполнение контракта?

6. Следует ли изменить объем закупок химикатов типа 2 со стороны, если их цена возрастет до 75 тыс. руб. за тонну?

7. На сколько возрастут минимальные издержки, если фонд времени работы реактора 2 сократится с 400 до 300 ч?

Решение. Введем обозначения:

x 1 - количество продукта 1, производимого компанией;z 1 - количество продукта 1, закупаемого компанией;x 2 - количество продукта 2, производимого компанией;z 2 - количество продукта 2, закупаемого компанией.

Модель линейного программирования приведена в следующей таблице:

Условия неотрицательности переменных: x 1 ³ 0 ;x 2 ³ 0 ;z 1 ³ 0 ;z 2 ³ 0 . Таблица исходной информации для расчетов вPOMWIN имеет следующий вид:

Результаты расчетов:

Таблица двойственных оценок и границ устойчивости:

Из таблицы двойственных оценок и границ устойчивости видно, что в пределах изменения закупочной цены на химикат типа 2 от 61 до 76 (ее фактическое значение 66) оптимальный план не изменится.

Из таблицы также видно, что изменение ресурса времени работы реактора 2 в пределах от 225 до 765 не приведет к изменению двойственной оценки соответствующего ограничения.

Ответы: 1. 55,55 т. 2. 38,89 т. 3. 44,44 т. 4. 81,11 т. 5. 11 475,56 тыс. руб. 6. Нет, не следует. 7. Ha 111 тыс. руб.

Вопросы Вопрос 1. Дана задача линейного программирования

Если эта задача имеет решение, то какие знаки имеют переменные y 1 иy 2 двойственной задачи? Варианты ответов:

Вопрос 2. На предприятии - два цеха. Проведены оптимизационные расчеты по определению программы развития предприятия с минимальными затратами. Получены оптимальный план и двойственные оценки ограничений по загрузке мощностей двух цехов. Оказалось, что двойственная оценка ограничений на производственные мощности первого цеха равна нулю, а второго - строго положительна. Это означает, что:

1) информации для ответа недостаточно;

2) мощности обоих цехов недогружены;

3) мощности обоих цехов использованы полностью;

4) мощности цеха 1 использованы полностью, а цеха 2 недогружены;

5) мощности цеха 1 недогружены, а цеха 1 использованы полностью.

Вопрос 3. Рассматривается задача планирования нефтеперерабатывающего производства, описанная в виде модели линейного программирования. Критерий - минимум издержек. В результате решения лимитирующим фактором оказалась мощность Оборудования, измеряемая в тоннах перерабатываемой нефти. В каких единицах измеряется двойственная оценка соответствующего ограничения?

Варианты ответов:

1) т/руб.; 2) руб./ч; 3) ч/руб.; 4) руб./т; 5) т.

Вопрос 4. Рассматривается задача оптимизации плана производства нефтепродуктов. Объем производства измеряется в тоннах. Задача решается на минимум издержек. Учитывается ограничение на время использования оборудования. В каких единицах измеряется значение коэффициентов матрицы для этого ограничения?

Варианты ответов:

Вопрос 5. Рассматривается задача оптимизации производственной программы. Критерий - максимум прибыли. Оптимальное значение критерия - 100. Двойственная оценка ограничения по трудозатратам равна 0,5, по объему производства - 1,5. Чему будет равна максимальная прибыль, если общий объем трудозатрат сократится на 10 единиц?

Варианты ответов:

1) 85; 2) 90; 3) 95; 4) 100; 5) 110.

Вопрос 6. Для всякого ли многогранника существует задача линейного программирования, допустимым множеством которой он является?

Варианты ответов:

1) да, для всякого;

2) нет, только для многогранника, имеющего более трех вершин;

3) нет, только для многогранника с положительными координатами вершин;

4) нет, только для выпуклого многогранника с неотрицательными координатами вершин;

5) нет, только для выпуклого многогранника.

Вопрос 7. Допустимое решение задачи линейного программирования:

1) должно одновременно удовлетворять всем ограничениям задачи;

2) должно удовлетворять некоторым, не обязательно всем, ограничениям задачи;

3) должно быть вершиной множества допустимых решений;

4) должно обеспечивать наилучшее значение целевой функции;

5) не удовлетворяет указанным выше условиям.

Вопрос 8. Рассмотрим следующую задачу линейного программирования:

при условиях

Оптимальное значение целевой функции в этой задаче равно: 1) 1600; 2) 1520; 3) 1800; 4) 1440; 5) не равно ни одному из указанных значений.

Вопрос 9. Рассмотрим следующую задачу линейного программирования: пои условиях

Какая из следующих точек с координатами (X, Y) не является допустимой? Варианты ответов:

5) ни одна из указанных.

Вопрос 10. Рассмотрим следующую задачу линейного программирования:

при условиях

Множество допустимых планов имеет следующие четыре вершины: (48, 84), (0, 120), (0, 0), (90, 0).

Чему равно оптимальное значение целевой функции?

Варианты ответов:

ни одному из указанных значений.

Задача 1. Нефтеперерабатывающая установка может работать в двух различных режимах. При работе в первом режиме из одной тонны нефти производится 300 кг темных и 600 кг светлых нефтепродуктов; при работе во втором режиме - 700 кг темных и 200 кг светлых нефтепродуктов. Ежедневно на этой установке необходимо производить 110 т темных и 70 т светлых нефтепродуктов. Это плановое задание необходимо ежедневно выполнять, расходуя минимальное количество нефти.

1. Сколько тонн нефти следует ежедневно перерабатывать в первом режиме?

2. Сколько тонн нефти следует ежедневно перерабатывать во втором режиме?

3. Каков минимальный ежедневный расход нефти?

4. На сколько тонн увеличится ежедневный минимальный расход нефти, если потребуется производить

в день 80 т светлых нефтепродуктов?

Задача 2. Фирма «Television» производит два вида телевизоров: «Астро» и «Космо».

В цехе 1 производят телевизионные трубки. На производство одной трубки к телевизору «Астро» требуется потратить 1,2 человекочаса, а на производство трубки к «Космо» - 1,8 человекочаса. В настоящее время в цехе 1 на производство трубок к обеим маркам телевизоров может быть затрачено не более 120 человекочасов в день.

В цехе 2 производят шасси с электронной схемой телевизора. На производство шасси для телевизора любой марки требуется затратить 1 человекочас. На производство шасси к обеим маркам телевизоров в цехе 2 может быть затрачено не более 90 человеко-часов в день.

Продажа каждого телевизора марки «Астро» обеспечивает прибыль в размере 1500 руб., а марки «Космо» - 2000 руб.

Фирма заинтересована в максимизации прибыли. Вопросы:

1. Сколько телевизоров «Астро» следует производить ежедневно?

2. Какова максимальная ежедневная прибыль телевизионной компании?

3. На сколько рублей в день увеличится прибыль, если ресурс времени в цехе 2 возрастет на 5 человекочасов?

4. Следует ли изменить план производства, если прибыль от телевизора «Космо» увеличится до 2200 руб.?

Задача 3. Чулочно-носочная фирма производит и продает два вида товаров: мужские носки и женские чулки. Фирма получает прибыль в размере 10 руб. от производства и продажи одной пары чулок и в размере 4 руб. от производства и продажи одной пары носков.

Производство каждого изделия осуществляется на трех участках. Затраты труда (в часах) на производство одной пары указаны в следующей таблице для каждого участка:

Руководство рассчитало, что в следующем месяце фирма ежедневно будет располагать следующими ресурсами рабочего времени на каждом из участков: 60 ч на участке 1; 70 ч на участке 2 и 100 ч на участке 3.

1. Сколько пар носков следует производить ежедневно, если фирма хочет максимизировать прибыль?